Solveeit Logo

Question

Mathematics Question on Sequence and series

An A.P.A.P. has the property that the sum of first ten terms is half the sum of next ten terms. If the second term is 1313, then the common difference is

A

3

B

2

C

5

D

4

Answer

2

Explanation

Solution

Let aa and dd be the first term and common difference, respectively.
Given, T2=13T_{2}=13
a+d=13(i)\Rightarrow \,a+d=13\,\,\,\,\,\,\,\dots(i)
According to the question,
(a1+a2++a10)=12(a11+a12++a20)\left(a_{1}+a_{2}+\ldots+a_{10}\right)=\frac{1}{2}\left(a_{11}+a_{12}+\ldots+a_{20}\right)
2(a1+a2++a10)=a11+a12++a20\Rightarrow\, 2\left(a_{1}+a_{2}+\ldots+a_{10}\right)=a_{11}+a_{12}+\ldots+a_{20}
3(a1+a2++a10)=(a1+a2++a20)\Rightarrow \,3\left(a_{1}+a_{2}+\ldots+a_{10}\right)=\left(a_{1}+a_{2}+\ldots+a_{20}\right)
( add a1+a2++a10a_{1}+a_{2}+\ldots+a_{10} on both sides)
3×102[2a+9d]=202[2a+19d]\Rightarrow \,3 \times \frac{10}{2}[2 a+9d]=\frac{20}{2}[2 a+19 d]
6a+27d=4a+38d\Rightarrow\, 6 a+27 d=4 a+38d
2a=11d(ii)\Rightarrow\, 2 a =11 \,d\,\,\,\,\,\,\,\dots(ii)
From Eqs. (i) and (ii), we get
11d2+d=13\frac{11 d}{2}+d=13
13d2=13\Rightarrow \,\frac{13 d}{2}=13
d=2\Rightarrow \,d=2