Solveeit Logo

Question

Mathematics Question on Sequence and series

An A.P. consists of n (odd terms) and its middle term is m. Then the sum of the A.P. is

A

2 mn

B

1/2 mn

C

mn

D

mn2mn^2.

Answer

mn

Explanation

Solution

Middle term,
Tn+12=m\frac{T_{n+1}}{2} =m
a+(n+121)d=m⇒a+\left(\frac{n+1}{2} -1\right)d = m
2a+(n+12)d=2m\Rightarrow 2a+\left(n+1-2\right)d = 2m
2a+(n1)d=2m\Rightarrow 2a+\left(n-1\right)d = 2m
n2[2a+(n1)d]=n2(2m)=mn\Rightarrow \frac{n}{2}\left[2a+\left(n-1\right)d\right]= \frac{n}{2}\left(2m\right) = mn
n2[2a+(n1)d]=mn\Rightarrow \frac{n}{2}\left[2a+\left(n-1\right)d\right]= mn
Sn\Rightarrow S_{n} of A.P.=mnA.P. = mn

So, the correct option is (C): mnmn.