Solveeit Logo

Question

Physics Question on Alternating current

An A.C. is given by equation I=I1cosωt+I2sinωtI = I_1\cos\,\omega t + I_2\,\sin \,\omega t. The r.m.s. value of current is given by

A

I1+I22\frac{I_1+I_2}{2}

B

(I1+I2)22\frac{(I_1+I_2)^2}{\sqrt2}

C

12I12+I22\frac{1}{\sqrt2}\sqrt{I^2_1+I^2_2}

D

I12+I222\frac{I^2_1+I^2_2}{2}

Answer

12I12+I22\frac{1}{\sqrt2}\sqrt{I^2_1+I^2_2}

Explanation

Solution

I=I1cosωt+I2sinωt+2I1I2cosωt.sinωtI=I_1\,\cos\,\omega t+I_2\,\sin\,\omega t+2I_1I_2\,\cos\,\omega\,t .\sin \,\omega t I12.12I22.12+2I1I2×0;Irms=(I12+I22)1/22I^2_1.\frac{1}{2}I^2_2.\frac{1}{2}+2I_1I_2\times 0; I_{rms}=\frac{(I^2_1+I^2_2)^{1/2}}{\sqrt{2}}