Solveeit Logo

Question

Question: \(\alpha,\beta,\gamma\) are real numbers satisfying \(\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}\...

α,β,γ\alpha,\beta,\gamma are real numbers satisfying cotA2cotB2cotC2\cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}. The minimum value of the given expression sinα+sinβ+sinγ\sin\alpha + \sin\beta + \sin\gamma is

A

Zero

B

– 3

C

Positive

D

Negative

Answer

Positive

Explanation

Solution

Since sinα+sinβ+sinγ>sin(α+β+γ)\sin\alpha + \sin\beta + \sin\gamma > \sin(\alpha + \beta + \gamma)

when α+β+γ=π\alpha + \beta + \gamma = \pi.

\therefore sinα+sinβ+sinγ>0\sin\alpha + \sin\beta + \sin\gamma > 0

\thereforeThe minimum value of sinα+sinβ+sinγ\sin\alpha + \sin\beta + \sin\gamma is always positive.