Solveeit Logo

Question

Question: $(\alpha + \beta)(\delta + \gamma) = k - 30$ $\alpha + \beta + \gamma + \delta = 18$ $\alpha \bet...

(α+β)(δ+γ)=k30(\alpha + \beta)(\delta + \gamma) = k - 30

α+β+γ+δ=18\alpha + \beta + \gamma + \delta = 18

αβγ+αβδ+αγδ+βγδ=200\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = -200

αβ=32\alpha \beta = -32, γδ=62\gamma \delta = 62

Find kk

α,β,γ,δ\alpha, \beta, \gamma, \delta are variables finite numbers.

Answer

86

Explanation

Solution

Let

S1=α+β,S2=γ+δS_1 = \alpha + \beta, \quad S_2 = \gamma + \delta.

Then, from the second equation,

S1+S2=18S2=18S1S_1 + S_2 = 18 \quad \Rightarrow \quad S_2 = 18 - S_1.

The triple product sum can be rewritten as:

αβγ+αβδ+αγδ+βγδ=αβ(γ+δ)+γδ(α+β)=(32)S2+62S1\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \alpha\beta(\gamma+\delta) + \gamma\delta(\alpha+\beta) = (-32)S_2 + 62S_1.

Given that this sum equals -200,

32(18S1)+62S1=200-32(18-S_1) + 62S_1 = -200.

Expanding,

576+32S1+62S1=200576+94S1=200-576 + 32S_1 + 62S_1 = -200 \quad \Rightarrow \quad -576 + 94S_1 = -200.

Solving for S1S_1,

94S1=376S1=494S_1 = 376 \quad \Rightarrow \quad S_1 = 4.

Then,

S2=184=14S_2 = 18 - 4 = 14.

We are also given,

(α+β)(γ+δ)=k30(\alpha + \beta)(\gamma + \delta) = k - 30.

Substitute S1S_1 and S2S_2,

4×14=k3056=k304 \times 14 = k - 30 \quad \Rightarrow \quad 56 = k - 30.

Thus,

k=86k = 86.