Question
Question: $(\alpha + \beta)(\delta + \gamma) = k - 30$ $\alpha + \beta + \gamma + \delta = 18$ $\alpha \bet...
(α+β)(δ+γ)=k−30
α+β+γ+δ=18
αβγ+αβδ+αγδ+βγδ=−200
αβ=−32, γδ=62
Find k
α,β,γ,δ are variables finite numbers.

Answer
86
Explanation
Solution
Let
S1=α+β,S2=γ+δ.
Then, from the second equation,
S1+S2=18⇒S2=18−S1.
The triple product sum can be rewritten as:
αβγ+αβδ+αγδ+βγδ=αβ(γ+δ)+γδ(α+β)=(−32)S2+62S1.
Given that this sum equals -200,
−32(18−S1)+62S1=−200.
Expanding,
−576+32S1+62S1=−200⇒−576+94S1=−200.
Solving for S1,
94S1=376⇒S1=4.
Then,
S2=18−4=14.
We are also given,
(α+β)(γ+δ)=k−30.
Substitute S1 and S2,
4×14=k−30⇒56=k−30.
Thus,
k=86.