Question
Question: \(\alpha ,\beta \) are complex cube roots of unity and \(x=a+b\), \(y=a\alpha +b\beta \), \(z=a\beta...
α,β are complex cube roots of unity and x=a+b, y=aα+bβ, z=aβ+bα then x3+y3+z3=
A. 0
B. 3ab
C. 3(a3−b3)
D. 3(a−b)3
Explanation
Solution
Hint: Assume α=ω,β=ω2. Substitute the values in x.yand z. Then add x+y+z and simplify. Then use the formula x3+y3+z3=(x+y+z)(x2+y2+z2−xy−yz−zx)+3xyz. Then substitute the value of x+y+z in the formula. You will get the answer. Try it.
Complete step-by-step answer:
x=a+b
y=aω+bω2
z=aω2+bω
So x+y+z=a+b+aω+bω2+aω2+bω
x+y+z=a(1+ω+ω2)+b(1+ω+ω2)
We know 1+ω+ω2=0.
x+y+z=0
We know the formula x3+y3+z3=(x+y+z)(x2+y2+z2−xy−yz−zx)+3xyz.
So herex+y+z=0.
So x3+y3+z3=(0)(x2+y2+z2−xy−yz−zx)+3xyz
x3+y3+z3=3xyz
So we know the value ofx,y and z.
So substituting the values we get,
x3+y3+z3=3(a+b)(aω+bω2)(aω2+bω)
Simplifying we get,