Solveeit Logo

Question

Question: The coefficient of linear expansion of an inhomogeneous rod changes linearly from $\alpha_1$ to $\al...

The coefficient of linear expansion of an inhomogeneous rod changes linearly from α1\alpha_1 to α2\alpha_2 from one end to other end of the rod. The effective coefficient of linear expansion of rod is :-

A

α1+α2\alpha_1 + \alpha_2

B

α1+α22\frac{\alpha_1 + \alpha_2}{2}

C

α1α2\sqrt{\alpha_1 \alpha_2}

D

α1α2\alpha_1 - \alpha_2

Answer

α1+α22\frac{\alpha_1 + \alpha_2}{2}

Explanation

Solution

The coefficient of linear expansion α\alpha varies linearly along the length LL of the rod from α1\alpha_1 to α2\alpha_2. Let α(x)\alpha(x) be the coefficient at a distance xx from one end. We can express α(x)\alpha(x) as: α(x)=α1+α2α1Lx\alpha(x) = \alpha_1 + \frac{\alpha_2 - \alpha_1}{L} x

The change in length d(ΔL)d(\Delta L) of a small segment dxdx due to a temperature change ΔT\Delta T is given by d(ΔL)=α(x)dxΔTd(\Delta L) = \alpha(x) dx \Delta T. The total change in length of the rod, ΔL\Delta L, is the integral of d(ΔL)d(\Delta L) over the entire length of the rod: ΔL=0Lα(x)dxΔT\Delta L = \int_0^L \alpha(x) dx \Delta T

The effective coefficient of linear expansion, αeff\alpha_{eff}, is defined by the relation ΔL=αeffLΔT\Delta L = \alpha_{eff} L \Delta T. Equating the two expressions for ΔL\Delta L: αeffLΔT=0Lα(x)dxΔT\alpha_{eff} L \Delta T = \int_0^L \alpha(x) dx \Delta T αeff=1L0Lα(x)dx\alpha_{eff} = \frac{1}{L} \int_0^L \alpha(x) dx

Substituting the expression for α(x)\alpha(x): αeff=1L0L(α1+α2α1Lx)dx\alpha_{eff} = \frac{1}{L} \int_0^L \left( \alpha_1 + \frac{\alpha_2 - \alpha_1}{L} x \right) dx αeff=1L[α1x+α2α1Lx22]0L\alpha_{eff} = \frac{1}{L} \left[ \alpha_1 x + \frac{\alpha_2 - \alpha_1}{L} \frac{x^2}{2} \right]_0^L αeff=1L(α1L+α2α1LL22)\alpha_{eff} = \frac{1}{L} \left( \alpha_1 L + \frac{\alpha_2 - \alpha_1}{L} \frac{L^2}{2} \right) αeff=1L(α1L+(α2α1)L2)\alpha_{eff} = \frac{1}{L} \left( \alpha_1 L + \frac{(\alpha_2 - \alpha_1)L}{2} \right) αeff=α1+α2α12\alpha_{eff} = \alpha_1 + \frac{\alpha_2 - \alpha_1}{2} αeff=2α1+α2α12\alpha_{eff} = \frac{2\alpha_1 + \alpha_2 - \alpha_1}{2} αeff=α1+α22\alpha_{eff} = \frac{\alpha_1 + \alpha_2}{2}

Alternatively, for a quantity that varies linearly over an interval, its average value is the arithmetic mean of its values at the endpoints. Since α(x)\alpha(x) varies linearly from α1\alpha_1 to α2\alpha_2, its average value over the length LL is α1+α22\frac{\alpha_1 + \alpha_2}{2}. This average value is the effective coefficient of linear expansion.