Solveeit Logo

Question

Question: What internal pressure (in the absence of an external pressure) can be sustained (a) by a glass tube...

What internal pressure (in the absence of an external pressure) can be sustained (a) by a glass tube; (b) by a glass spherical flask, if in both cases the wall thickness is equal to Δr=1.0\Delta r = 1.0 mm and the radius of the tube and the flask equals r = 25 mm? (σb=5×107\sigma_b = 5 \times 10^7 Pa)

A

a) 2×1062 \times 10^6 Pa, b) 4×1064 \times 10^6 Pa

B

a) 4×1064 \times 10^6 Pa, b) 2×1062 \times 10^6 Pa

C

a) 2×1072 \times 10^7 Pa, b) 4×1074 \times 10^7 Pa

D

a) 5×1065 \times 10^6 Pa, b) 10×10610 \times 10^6 Pa

Answer

a) 2×1062 \times 10^6 Pa, b) 4×1064 \times 10^6 Pa

Explanation

Solution

For a thin-walled cylindrical tube, the hoop stress is given by σh=Prt\sigma_h = \frac{Pr}{t}. The maximum internal pressure (Pmax,tubeP_{max, tube}) is sustained when the hoop stress equals the breaking stress (σb\sigma_b), so Pmax,tube=σbtrP_{max, tube} = \frac{\sigma_b t}{r}. Given r=25mm=25×103mr = 25 \, \text{mm} = 25 \times 10^{-3} \, \text{m}, t=1.0mm=1.0×103mt = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m}, and σb=5×107Pa\sigma_b = 5 \times 10^7 \, \text{Pa}: Pmax,tube=(5×107Pa)×(1.0×103m)25×103m=5×10425×103Pa=0.2×107Pa=2×106PaP_{max, tube} = \frac{(5 \times 10^7 \, \text{Pa}) \times (1.0 \times 10^{-3} \, \text{m})}{25 \times 10^{-3} \, \text{m}} = \frac{5 \times 10^4}{25 \times 10^{-3}} \, \text{Pa} = 0.2 \times 10^7 \, \text{Pa} = 2 \times 10^6 \, \text{Pa}.

For a thin-walled spherical flask, the stress is given by σs=Pr2t\sigma_s = \frac{Pr}{2t}. The maximum internal pressure (Pmax,flaskP_{max, flask}) is sustained when the stress equals the breaking stress (σb\sigma_b), so Pmax,flask=2σbtrP_{max, flask} = \frac{2\sigma_b t}{r}. Using the same given values: Pmax,flask=2×(5×107Pa)×(1.0×103m)25×103m=10×10425×103Pa=0.4×107Pa=4×106PaP_{max, flask} = \frac{2 \times (5 \times 10^7 \, \text{Pa}) \times (1.0 \times 10^{-3} \, \text{m})}{25 \times 10^{-3} \, \text{m}} = \frac{10 \times 10^4}{25 \times 10^{-3}} \, \text{Pa} = 0.4 \times 10^7 \, \text{Pa} = 4 \times 10^6 \, \text{Pa}.