Question
Question: What internal pressure (in the absence of an external pressure) can be sustained (a) by a glass tube...
What internal pressure (in the absence of an external pressure) can be sustained (a) by a glass tube; (b) by a glass spherical flask, if in both cases the wall thickness is equal to Δr=1.0 mm and the radius of the tube and the flask equals r = 25 mm? (σb=5×107 Pa)

a) 2×106 Pa, b) 4×106 Pa
a) 4×106 Pa, b) 2×106 Pa
a) 2×107 Pa, b) 4×107 Pa
a) 5×106 Pa, b) 10×106 Pa
a) 2×106 Pa, b) 4×106 Pa
Solution
For a thin-walled cylindrical tube, the hoop stress is given by σh=tPr. The maximum internal pressure (Pmax,tube) is sustained when the hoop stress equals the breaking stress (σb), so Pmax,tube=rσbt. Given r=25mm=25×10−3m, t=1.0mm=1.0×10−3m, and σb=5×107Pa: Pmax,tube=25×10−3m(5×107Pa)×(1.0×10−3m)=25×10−35×104Pa=0.2×107Pa=2×106Pa.
For a thin-walled spherical flask, the stress is given by σs=2tPr. The maximum internal pressure (Pmax,flask) is sustained when the stress equals the breaking stress (σb), so Pmax,flask=r2σbt. Using the same given values: Pmax,flask=25×10−3m2×(5×107Pa)×(1.0×10−3m)=25×10−310×104Pa=0.4×107Pa=4×106Pa.