Solveeit Logo

Question

Question: The linear mass density of ring is given as $\lambda = \lambda_0 \sin\theta$. Choose the correct sta...

The linear mass density of ring is given as λ=λ0sinθ\lambda = \lambda_0 \sin\theta. Choose the correct statement (s).

A

The COM of the ring is at (0,πR8)(0, \frac{\pi R}{8}) m

B

The COM of the ring is at (0,πR4)(0, \frac{\pi R}{4}) m

C

The COM of the ring is at (0,πR2)(0, \frac{\pi R}{2}) m

D

The COM of the ring exist on y axis.

Answer

The COM of the ring is at (0,πR4)(0, \frac{\pi R}{4}) m and the COM of the ring exist on y axis.

Explanation

Solution

The center of mass (COM) of a continuous object is found by integration. For a semicircular ring of radius R, we consider an infinitesimal mass element dmdm. The linear mass density is given as λ=λ0sinθ\lambda = \lambda_0 \sin\theta. The infinitesimal length element on the ring is dl=Rdθdl = R \, d\theta.

  1. Mass element (dmdm): dm=λdl=(λ0sinθ)(Rdθ)=λ0Rsinθdθdm = \lambda \, dl = (\lambda_0 \sin\theta) (R \, d\theta) = \lambda_0 R \sin\theta \, d\theta.

  2. Total mass (MM): The semicircle spans from θ=0\theta = 0 to θ=π\theta = \pi. M=0πdm=0πλ0RsinθdθM = \int_{0}^{\pi} dm = \int_{0}^{\pi} \lambda_0 R \sin\theta \, d\theta M=λ0R[cosθ]0π=λ0R(cosπ(cos0))=λ0R((1)(1))=2λ0RM = \lambda_0 R [-\cos\theta]_{0}^{\pi} = \lambda_0 R (-\cos\pi - (-\cos0)) = \lambda_0 R (-(-1) - (-1)) = 2 \lambda_0 R.

  3. Center of Mass coordinates (XCOM,YCOMX_{COM}, Y_{COM}): The coordinates of a point on the ring are x=Rcosθx = R \cos\theta and y=Rsinθy = R \sin\theta. XCOM=1Mxdm=1M0π(Rcosθ)(λ0Rsinθdθ)X_{COM} = \frac{1}{M} \int x \, dm = \frac{1}{M} \int_{0}^{\pi} (R \cos\theta) (\lambda_0 R \sin\theta \, d\theta) XCOM=λ0R2M0πsinθcosθdθX_{COM} = \frac{\lambda_0 R^2}{M} \int_{0}^{\pi} \sin\theta \cos\theta \, d\theta. Since 0πsinθcosθdθ=[sin2θ2]0π=0\int_{0}^{\pi} \sin\theta \cos\theta \, d\theta = [\frac{\sin^2\theta}{2}]_{0}^{\pi} = 0, we get XCOM=0X_{COM} = 0.

    YCOM=1Mydm=1M0π(Rsinθ)(λ0Rsinθdθ)Y_{COM} = \frac{1}{M} \int y \, dm = \frac{1}{M} \int_{0}^{\pi} (R \sin\theta) (\lambda_0 R \sin\theta \, d\theta) YCOM=λ0R2M0πsin2θdθY_{COM} = \frac{\lambda_0 R^2}{M} \int_{0}^{\pi} \sin^2\theta \, d\theta. Using sin2θ=1cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}, the integral is: 0πsin2θdθ=0π1cos(2θ)2dθ=12[θsin(2θ)2]0π=12(π0)=π2\int_{0}^{\pi} \sin^2\theta \, d\theta = \int_{0}^{\pi} \frac{1 - \cos(2\theta)}{2} \, d\theta = \frac{1}{2} [\theta - \frac{\sin(2\theta)}{2}]_{0}^{\pi} = \frac{1}{2} (\pi - 0) = \frac{\pi}{2}. Substituting M=2λ0RM = 2 \lambda_0 R: YCOM=λ0R22λ0R(π2)=R2(π2)=πR4Y_{COM} = \frac{\lambda_0 R^2}{2 \lambda_0 R} \left(\frac{\pi}{2}\right) = \frac{R}{2} \left(\frac{\pi}{2}\right) = \frac{\pi R}{4}.

    Thus, the COM of the ring is at (0,πR4)(0, \frac{\pi R}{4}).

  4. Evaluate the statements: (A) The COM of the ring is at (0,πR8)(0, \frac{\pi R}{8}) m. Incorrect. (B) The COM of the ring is at (0,πR4)(0, \frac{\pi R}{4}) m. Correct, matches our calculation. (C) The COM of the ring is at (0,πR2)(0, \frac{\pi R}{2}) m. Incorrect. (D) The COM of the ring exist on y axis. Correct, since XCOM=0X_{COM} = 0.

Since the question asks for correct statement(s), both (B) and (D) are correct.