Solveeit Logo

Question

Question: An air bubble of radius 1 cm rises with a constant speed of 3.5 mm/sec. through a liquid of density ...

An air bubble of radius 1 cm rises with a constant speed of 3.5 mm/sec. through a liquid of density 1.75×103kgm31.75 \times 10^3 kg m^{-3}. Neglecting the density of air, the coefficient of viscosity of the liquid (in kg m1s1m^{-1} s^{-1})

A

54.5

B

109

C

163.5

D

218

Answer

109

Explanation

Solution

At constant speed (terminal velocity), the upward buoyant force equals the downward viscous drag force. Neglecting the weight of the air bubble: FB=FdF_B = F_d ρliquidVg=6πηrv\rho_{liquid} V g = 6 \pi \eta r v Given V=43πr3V = \frac{4}{3} \pi r^3, we have: ρliquid(43πr3)g=6πηrv\rho_{liquid} (\frac{4}{3} \pi r^3) g = 6 \pi \eta r v Solving for η\eta: η=2r2ρliquidg9v\eta = \frac{2 r^2 \rho_{liquid} g}{9 v} Substituting the values: r=102r = 10^{-2} m, v=3.5×103v = 3.5 \times 10^{-3} m/s, ρliquid=1.75×103\rho_{liquid} = 1.75 \times 10^3 kg/m3^3, g=9.8g = 9.8 m/s2^2. η=2×(102)2×(1.75×103)×9.89×(3.5×103)108.89\eta = \frac{2 \times (10^{-2})^2 \times (1.75 \times 10^3) \times 9.8}{9 \times (3.5 \times 10^{-3})} \approx 108.89 kg m1^{-1} s1^{-1}. This is closest to 109.