Solveeit Logo

Question

Question: All x satisfy the inequality \[{{\left( {{\cot }^{-1}}x \right)}^{2}}-7\left( {{\cot }^{-1}}x \ri...

All x satisfy the inequality
(cot1x)27(cot1x)+10>0{{\left( {{\cot }^{-1}}x \right)}^{2}}-7\left( {{\cot }^{-1}}x \right)+10>0, lie in the interval
(a) (,cot5)(cot4,cot2)\left( -\infty ,\cot 5 \right)\cup \left( \cot 4,\cot 2 \right)
(b) (cot5,cot4)\left( \cot 5,\cot 4 \right)
(c) (cot2,)\left( \cot 2,\infty \right)
(d) (,cot2)(cot5,)\left( -\infty ,\cot 2 \right)\cup \left( \cot 5,\infty \right)

Explanation

Solution

Hint: First of all, let cot1x=y{{\cot }^{-1}}x=y and resolve the equation into factors and find the range of y=cot1xy={{\cot }^{-1}}x. Then draw the graph of cot1x{{\cot }^{-1}}x to examine the values of x. Consider the domain and range of cot1x{{\cot }^{-1}}x properly for the correct values of x.

Complete step-by-step answer:
We are given that (cot1x)27(cot1x)+10>0{{\left( {{\cot }^{-1}}x \right)}^{2}}-7\left( {{\cot }^{-1}}x \right)+10>0.
Here, we have to find the values of x which satisfies this inequality.

Let us consider the inequality given in the question.
(cot1x)27(cot1x)+10>0{{\left( {{\cot }^{-1}}x \right)}^{2}}-7\left( {{\cot }^{-1}}x \right)+10>0
Let us consider cot1x{{\cot }^{-1}}x to be y. By substituting cot1x=y{{\cot }^{-1}}x=y in the above inequality, we get,
y27y+10>0{{y}^{2}}-7y+10>0

Here, we can write 7y = 5y + 2y. So, we get,
y25y2y+10>0{{y}^{2}}-5y-2y+10>0
We can write the above inequality as,
y(y5)2(y5)>0y\left( y-5 \right)-2\left( y-5 \right)>0
By taking out (y – 5) common, we get,
(y5)(y2)>0\left( y-5 \right)\left( y-2 \right)>0

If y > 5, then (y – 5) > 0 and (y – 2) > 0.
So, we get (y – 5) (y – 2) > 0

Hence, y > 5 satisfies the inequality.
For example, let us take y = 7. By substituting y = 7, we get,
(75)(72)=(2)(5)=10>0\left( 7-5 \right)\left( 7-2 \right)=\left( 2 \right)\left( 5 \right)=10>0
So, we get, y(5,)y\in \left( 5,\infty \right).
If 2 < y < 5, then (y – 5) < 0 and (y – 2) > 0
So, we get (y – 5) (y – 2) < 0

Hence, 2 < y < 5 does not satisfy the inequality.

For example, let us take y = 3. By substituting y = 3, we get,
(35)(32)=(2)(1)=2<0\left( 3-5 \right)\left( 3-2 \right)=\left( -2 \right)\left( 1 \right)=-2<0
So, we get, y(2,5)y\notin \left( 2,5 \right).
If y < 2, then (y – 5) < 0 and (y – 2) < 0.
So, we get, (y – 5) (y – 2) > 0

Hence y < 2 satisfies the inequality.
For example, let us take y = 0. By substituting y = 0, we get,
(05)(02)=(5)(2)=10>0\left( 0-5 \right)\left( 0-2 \right)=\left( -5 \right)\left( -2 \right)=10>0
So, we get y(,2)y\in \left( -\infty ,2 \right).
Hence, we get y(,2)(5,)y\in \left( -\infty ,2 \right)\cup \left( 5,\infty \right).
We had assumed that cot1x=y{{\cot }^{-1}}x=y, so by substituting y=cot1xy={{\cot }^{-1}}x, we get,
cot1x(,2)(5,){{\cot }^{-1}}x\in \left( -\infty ,2 \right)\cup \left( 5,\infty \right)
So, we get cot1x<2{{\cot }^{-1}}x<2 and cot1x>5{{\cot }^{-1}}x>5.

Now, we will see the graph of cot1x{{\cot }^{-1}}x, that is

We know that the range of cot1x{{\cot }^{-1}}x is (0,π)\left( 0,\pi \right), so it can’t be greater than 5.

Now, considering cot1x<2{{\cot }^{-1}}x<2
From the graph, we can see that, for cot1x<2, x>cot2{{\cot }^{-1}}x<2,\text{ }x>\cot 2
So, we get x(cot2,)x\in \left( \cot 2,\infty \right).

Hence, the correct answer is option (c).

Note: After getting cot1x(,2)(5,){{\cot }^{-1}}x\in \left( -\infty ,2 \right)\cup \left( 5,\infty \right), students often make this mistake of calculating x as x(,cot2)(cot5,)x\in \left( -\infty ,\cot 2 \right)\cup \left( \cot 5,\infty \right) but this is wrong as we know that cot1x{{\cot }^{-1}}x could not be greater than 5 because its range is (0,π)\left( 0,\pi \right). Also for cot1x(,2){{\cot }^{-1}}x\in \left( -\infty ,2 \right), x(cot2,)x\in \left( \cot 2,\infty \right) not (,cot2)\left( -\infty ,\cot 2 \right). So for inverse trigonometric function, it is advisable to first draw the graph and then only examine the values of x for the correct results.