Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

All the values of m for which both roots of the equation x22mx+m21=0x^{2}-2mx+m^{2}-1=0 are greater than -2but less than 4 lie in the interval :

A

m>3m > 3

B

1<m<3-1 < m < 3

C

1<m<41 < m < 4

D

2<m<0-2 < m < 0

Answer

1<m<3-1 < m < 3

Explanation

Solution

Since both roots of equation x22mx+m21=0x^{2}-2mx+m^{2}-1=0 are greater than -2 but less than 4. D0\therefore D \ge 0 4m24m2+40mϵR...(i)\Rightarrow 4m^{2}-4m^{2}+4 \ge 0 \Rightarrow m\,\epsilon\,R ...\left(i\right) 2<b2a<42<(2m2.1)<4-2 < \frac{-b}{2a} < 4 \Rightarrow -2 < \left(\frac{2m}{2.1}\right) < 4 2<m<4...(ii)\Rightarrow -2 < m < 4 ...\left(ii\right) Also f(4)>0168m+m21>0f \left(4\right) > 0 \Rightarrow 16-8m+m^{2}-1 > 0 m28m+15>0\Rightarrow m^{2}-8m+15 > 0 (m3)(m5)>0\Rightarrow \left(m-3\right)\left(m-5\right) > 0 <m<3\Rightarrow -\infty < m < 3 and 5<m<...(iii)5 < m < \infty ...\left(iii\right) Also f(2)>04+4m+m21>0f \left(2\right) > 0 \Rightarrow 4+4m+m^{2}-1 > 0 m24m+3>0\Rightarrow m^{2}-4m+3 > 0 (m+3)(m+1)>0\Rightarrow \left(m+3\right)\left(m+1\right) > 0 <m<3\Rightarrow -\infty < m < -3 and 1<m<...(iv)-1 < m < \infty ...\left(iv\right) \therefore From (i),(ii),(iii)and(iv)\left(i\right), \left(ii\right), \left(iii\right) and \left(iv\right) m lies between -1 and 3.