Solveeit Logo

Question

Question: All possible values of p and q for which \(\cos^{- 1}\sqrt{p} + \cos^{- 1}\sqrt{1 - p} + \cos^{- 1}...

All possible values of p and q for which

cos1p+cos11p+cos11q=3π4\cos^{- 1}\sqrt{p} + \cos^{- 1}\sqrt{1 - p} + \cos^{- 1}\sqrt{1 - q} = \frac{3\pi}{4} holds, is

A

p=1,q=12p = - 1,q = \frac{1}{2}

B

q>1,p=12q > 1,p = \frac{1}{2}

C

0p1,q=120 \leq p \leq 1,q = \frac{1}{2}

D

None of these

Answer

0p1,q=120 \leq p \leq 1,q = \frac{1}{2}

Explanation

Solution

cos1p+cos11p=3π4cos11q\cos^{- 1}\sqrt{p} + \cos^{- 1}\sqrt{1 - p} = \frac{3\pi}{4} - \cos^{- 1}\sqrt{1 - q}

\Rightarrow cos1p+cos11p=cos1(12)cos11q\cos^{- 1}\sqrt{p} + \cos^{- 1}\sqrt{1 - p} = \cos^{- 1}\left( \frac{- 1}{\sqrt{2}} \right) - \cos^{- 1}\sqrt{1 - q}

\Rightarrow p1p1pp=[12.1q12.q]\sqrt{p}\sqrt{1 - p} - \sqrt{1 - p}\sqrt{p} = - \left\lbrack \frac{1}{\sqrt{2}}.\sqrt{1 - q} - \frac{1}{\sqrt{2}}.\sqrt{q} \right\rbrack

0=1qq\Rightarrow 0 = \sqrt{1 - q} - \sqrt{q} \Rightarrow q=12q = \frac{1}{2}