Solveeit Logo

Question

Question: aIf \(f(a + b - x) = f(x)\) then \(\int_{a}^{b}{xf(x)dx}\) is equal to...

aIf f(a+bx)=f(x)f(a + b - x) = f(x) then abxf(x)dx\int_{a}^{b}{xf(x)dx} is equal to

A

a+b2abf(bx)dx\frac{a + b}{2}\int_{a}^{b}{f(b - x)dx}

B

a+b2abf(x)dx\frac{a + b}{2}\int_{a}^{b}{f(x)dx}

C

ba2abf(x)dx\frac{b - a}{2}\int_{a}^{b}{f(x)dx}

D

None of these

Answer

a+b2abf(x)dx\frac{a + b}{2}\int_{a}^{b}{f(x)dx}

Explanation

Solution

I=abxf(x)dxI = \int_{a}^{b}{xf(x)dx} and I=ab(a+bx)f(a+bx)dxI = \int_{a}^{b}{(a + b - x)f(a + b - x)dx}

I=ab(a+bx)f(x)dxI = \int_{a}^{b}{(a + b - x)f(x)dx}I=ab(a+b)f(x)dxabxf(x)dxI = \int_{a}^{b}{(a + b)f(x)dx - \int_{a}^{b}{xf(x)dx}}

2I=[abf(x)dx](a+b)2I = \left\lbrack \int_{a}^{b}{f(x)dx} \right\rbrack(a + b)I=a+b2abf(x)dxI = \frac{a + b}{2}\int_{a}^{b}{f(x)dx}

(8) 0axf(x)dx=12a0af(x)dx\int_{0}^{a}{xf(x)dx} = \frac{1}{2}a\int_{0}^{a}{f(x)dx} if f(ax)=f(x)f(a - x) = f(x)