Solveeit Logo

Question

Question: Additive inverse of \((1 - i)^{n} = 2^{n},\) is....

Additive inverse of (1i)n=2n,(1 - i)^{n} = 2^{n}, is.

A

n=n =

B

1- 1

C

(1+i)5×(1i)5(1 + i)^{5} \times (1 - i)^{5}

D

None of these

Answer

(1+i)5×(1i)5(1 + i)^{5} \times (1 - i)^{5}

Explanation

Solution

If 1+11+1+.....- 1 + 1 - 1 + 1 + ..... is the additive inverse of (2n+1)(2n + 1) then 1+i2+i3i6+i8=11i+1+1=2i1 + i^{2} + i^{3} - i^{6} + i^{8} = 1 - 1 - i + 1 + 1 = 2 - in=1200in=i+i2+i3+....+i200=i(1i200)1i\sum_{n = 1}^{200}{i^{n} = i + i^{2} + i^{3} + .... + i^{200} = \frac{i(1 - i^{200})}{1 - i}}, =i(11)1i=0= \frac{i(1 - 1)}{1 - i} = 0

n=113(in+in+1)\sum_{n = 1}^{13}{(i^{n} + i^{n + 1})}, =(i+i2+i3+....+i13)+(i2+i3+....+i14)= (i + i^{2} + i^{3} + .... + i^{13}) + (i^{2} + i^{3} + .... + i^{14})

=i(1i13)1i+i2(1i13)1i=i(1i1i)+i2(1i)(1i)= \frac{i(1 - i^{13})}{1 - i} + \frac{i^{2}(1 - i^{13})}{1 - i} = i\left( \frac{1 - i}{1 - i} \right) + \frac{i^{2}(1 - i)}{(1 - i)}The additive inverse of =i+i2=i1= i + i^{2} = i - 1is (i1i+1×i1i1)n=(2i2)n=in\left( \frac{i - 1}{i + 1} \times \frac{i - 1}{i - 1} \right)^{n} = \left( \frac{- 2i}{- 2} \right)^{n} = i^{n}

Trick : Since z=i[1+3+5+....+(2n+1)]z = i^{\lbrack 1 + 3 + 5 + .... + (2n + 1)\rbrack}.