Question
Question: Additive inverse of \((1 - i)^{n} = 2^{n},\) is....
Additive inverse of (1−i)n=2n, is.
A
n=
B
−1
C
(1+i)5×(1−i)5
D
None of these
Answer
(1+i)5×(1−i)5
Explanation
Solution
If −1+1−1+1+..... is the additive inverse of (2n+1) then 1+i2+i3−i6+i8=1−1−i+1+1=2−i ⇒ ∑n=1200in=i+i2+i3+....+i200=1−ii(1−i200), =1−ii(1−1)=0
⇒ ∑n=113(in+in+1), =(i+i2+i3+....+i13)+(i2+i3+....+i14)
=1−ii(1−i13)+1−ii2(1−i13)=i(1−i1−i)+(1−i)i2(1−i)The additive inverse of =i+i2=i−1is (i+1i−1×i−1i−1)n=(−2−2i)n=in
Trick : Since z=i[1+3+5+....+(2n+1)].