Solveeit Logo

Question

Question: Addition of 0.643g of a compound to 50mL of benzene (density = 0.879gmL$^{-1}$), lowers the freezing...

Addition of 0.643g of a compound to 50mL of benzene (density = 0.879gmL1^{-1}), lowers the freezing point from 50.51°C to 50.03°C. If KfK_f for benzene is 5.12Kkgmol1^{-1}, the molecular mass (in gmol1^{-1}) of the compound is

A

156.05

B

312.00

C

78.00

D

468.00

Answer

156.05 gmol1^{-1}

Explanation

Solution

To find the molecular mass of the compound, we use the colligative property of freezing point depression. The formula relating the freezing point depression (ΔTf\Delta T_f) to the molality (mm) and the cryoscopic constant (KfK_f) is:

ΔTf=Kfm\Delta T_f = K_f \cdot m

Where:

  • ΔTf\Delta T_f is the freezing point depression.
  • KfK_f is the cryoscopic constant of the solvent.
  • mm is the molality of the solution.

Molality is defined as moles of solute per kilogram of solvent:

m=moles of solutemass of solvent (kg)m = \frac{\text{moles of solute}}{\text{mass of solvent (kg)}}

The number of moles of solute can be expressed as:

moles of solute=WBMB\text{moles of solute} = \frac{W_B}{M_B}

Where:

  • WBW_B is the mass of the solute.
  • MBM_B is the molecular mass of the solute.

The mass of the solvent (WAW_A) in kilograms is:

WA (in g)1000\frac{W_A \text{ (in g)}}{1000}

So, the molality can be rewritten as:

m=WB/MBWA/1000=WB×1000MB×WAm = \frac{W_B/M_B}{W_A/1000} = \frac{W_B \times 1000}{M_B \times W_A}

Substituting this into the freezing point depression formula:

ΔTf=Kf×WB×1000MB×WA\Delta T_f = K_f \times \frac{W_B \times 1000}{M_B \times W_A}

Given:

  • Mass of solute, WB=0.643W_B = 0.643 g
  • Volume of benzene (solvent), VA=50V_A = 50 mL
  • Density of benzene, ρA=0.879\rho_A = 0.879 g/mL
  • Freezing point of pure benzene, Tf0=50.51T_f^0 = 50.51^\circC
  • Freezing point of solution, Tf=50.03T_f = 50.03^\circC
  • Cryoscopic constant for benzene, Kf=5.12K_f = 5.12 K kg mol1^{-1}

First, calculate the mass of benzene (WAW_A) using its volume and density:

WA=ρA×VA=0.879 g/mL×50 mL=43.95W_A = \rho_A \times V_A = 0.879 \text{ g/mL} \times 50 \text{ mL} = 43.95 g

Next, calculate the freezing point depression (ΔTf\Delta T_f):

ΔTf=Tf0Tf=50.51C50.03C=0.48C=0.48\Delta T_f = T_f^0 - T_f = 50.51^\circ\text{C} - 50.03^\circ\text{C} = 0.48^\circ\text{C} = 0.48 K

Now, rearrange the formula ΔTf=Kf×WB×1000MB×WA\Delta T_f = \frac{K_f \times W_B \times 1000}{M_B \times W_A} to solve for MBM_B:

MB=Kf×WB×1000ΔTf×WAM_B = \frac{K_f \times W_B \times 1000}{\Delta T_f \times W_A}

Substitute the known values into the formula:

MB=5.12 K kg mol1×0.643 g×1000 g/kg0.48 K×43.95 gM_B = \frac{5.12 \text{ K kg mol}^{-1} \times 0.643 \text{ g} \times 1000 \text{ g/kg}}{0.48 \text{ K} \times 43.95 \text{ g}}

MB=5.12×0.643×10000.48×43.95=3292.1621.096156.05M_B = \frac{5.12 \times 0.643 \times 1000}{0.48 \times 43.95} = \frac{3292.16}{21.096} \approx 156.05 g/mol