Solveeit Logo

Question

Question: Acid catalysed hydrolysis of ester is first-order reaction and rate constant is given by\(k = \frac{...

Acid catalysed hydrolysis of ester is first-order reaction and rate constant is given byk=2.303tlogVV0VVtk = \frac{2.303}{t}\log\frac{V_{\infty} - V_{0}}{V_{\infty} - V_{t}}where V0Vt and VV_{0}\text{, }\text{V}_{t}\text{ and }\text{V}_{\infty} are the volume of standard NaOH required to neutralise acid present at a given time ; if ester is 50% hydrolysed then :

A

V = VtV_{\infty}\text{ = }\text{V}_{t}

B

V = (Vt-V0)\text{V = }(V_{t}\text{-}\text{V}_{0})

C

V = 2Vt - V0V\infty\text{ = 2}\text{V}_{t}\text{ - }\text{V}_{0}

D

V = 2Vt + V0 V_{\infty}\text{ = 2}\text{V}_{t}\text{ + }\text{V}_{0}\

Answer

V = 2Vt - V0V\infty\text{ = 2}\text{V}_{t}\text{ - }\text{V}_{0}

Explanation

Solution

If easter 50% hydrolysed then

x=a02x = \frac{a_{0}}{2} (a0x)=a02\left( a_{0} - x \right) = \frac{a_{0}}{2}

We can write a0 (V- V0)a_{0} \propto \ (V_{\infty}\text{- V0})

(a0 - x )  (VVt)(a_{0}\text{ - x })\ \rightarrow \ (V_{\infty}\text{- }\text{V}_{t})

VV02=(VVt)\frac{V_{\infty} - V_{0}}{2} = \left( V_{\infty} - V_{t} \right)

V - V0 = 2 V- 2 VtV_{\infty}\text{ - }\text{V}_{0}\text{ = 2 }\text{V}_{\infty}\text{- 2 }\text{V}_{t}

Vt=(VV0)2V_{t} = \frac{\left( V_{\infty} - V_{0} \right)}{2}

or V= 2 Vt - V0V_{\infty}\text{= 2 }\text{V}_{t}\text{ - }\text{V}_{0}