Solveeit Logo

Question

Physics Question on mechanical properties of fluid

According to Newton, the viscous force acting between liquid layers of area A and velocity gradient ΔυΔz\frac{\Delta \upsilon }{\Delta z} is given by F=ηAΔυΔzF=\eta A\frac{\Delta \upsilon }{\Delta z} where η\eta is a constant called coefficient of viscosity. The dimension of η\eta are:

A

 !![!! ML2T-2 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{-2}}}\text{ }\\!\\!]\\!\\!\text{ }

B

 !![!! ML-1T-1 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{-1}}}{{\text{T}}^{\text{-1}}}\text{ }\\!\\!]\\!\\!\text{ }

C

 !![!! ML2T2 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{-2}}{{\text{T}}^{-2}}\text{ }\\!\\!]\\!\\!\text{ }

D

 !![!! M0L0T0 !!]!! \text{ }\\!\\![\\!\\!\text{ }{{\text{M}}^{0}}{{\text{L}}^{0}}{{\text{T}}^{0}}\text{ }\\!\\!]\\!\\!\text{ }

Answer

 !![!! ML-1T-1 !!]!! \text{ }\\!\\![\\!\\!\text{ M}{{\text{L}}^{\text{-1}}}{{\text{T}}^{\text{-1}}}\text{ }\\!\\!]\\!\\!\text{ }

Explanation

Solution

Coefficient of viscosity η=force !!×!! lengtharea !!×!! velocity\eta =\frac{\text{force}\,\text{ }\\!\\!\times\\!\\!\text{ }\,\text{length}}{\text{area}\,\text{ }\\!\\!\times\\!\\!\text{ velocity}} Dimensions of η\eta =Dimension offorce !!×!! dimension of lengthDimension of area !!×!! dimension of velocity=\frac{\text{Dimension of}\,\text{force}\,\,\text{ }\\!\\!\times\\!\\!\text{ }\,\,\text{dimension of length}}{\text{Dimension of area}\,\,\text{ }\\!\\!\times\\!\\!\text{ }\,\,\text{dimension of velocity}} =MLT2×LL2×LT1=[ML1T1]=\frac{ML{{T}^{-2}}\times L}{{{L}^{2}}\times L{{T}^{-1}}}=[M{{L}^{-1}}{{T}^{-1}}]