Solveeit Logo

Question

Question: according to liquid model Binding energy is given by B= a1-a2A^2/3-a3 z(z-1)/A^1/3-a4(A-2z)^2/A+p wh...

according to liquid model Binding energy is given by B= a1-a2A^2/3-a3 z(z-1)/A^1/3-a4(A-2z)^2/A+p where a1=15.5Mev a2=16.8Mev a3=0.7Mev a4=23Mev p - constant. find z for which binding energy is minimum for A=64

Answer

29

Explanation

Solution

For A=64A = 64, the binding energy (ignoring constants independent of zz) is

B(z)=a3A1/3z(z1)a4A(A2z)2.B(z) = -\frac{a_3}{A^{1/3}}\,z(z-1) -\frac{a_4}{A}\,(A-2z)^2.

Differentiate with respect to zz and set the derivative to zero.

  1. The derivative of the first term: ddz[a3A1/3(z2z)]=a3A1/3(2z1).\frac{d}{dz}\left[-\frac{a_3}{A^{1/3}}(z^2-z)\right] = -\frac{a_3}{A^{1/3}}(2z-1).
  2. The derivative of the second term: ddz[a4A(A2z)2]=a4A2(A2z)(2)=4a4A(A2z).\frac{d}{dz}\left[-\frac{a_4}{A}(A-2z)^2\right] = -\frac{a_4}{A}\cdot 2(A-2z)(-2) = \frac{4a_4}{A}(A-2z).

Set the sum to zero:

a3A1/3(2z1)+4a4A(A2z)=0.-\frac{a_3}{A^{1/3}}(2z-1) + \frac{4a_4}{A}(A-2z)=0.

For A=64A=64, note that A1/3=4A^{1/3} = 4:

a34(2z1)+4a464(642z)=0.-\frac{a_3}{4}(2z-1) + \frac{4a_4}{64}(64-2z)=0.

Since 464=116\frac{4}{64}=\frac{1}{16}, the equation becomes:

a34(2z1)+a416(642z)=0.-\frac{a_3}{4}(2z-1) + \frac{a_4}{16}(64-2z)=0.

Multiplying through by 16 to clear denominators:

4a3(2z1)+a4(642z)=0.-4a_3(2z-1) + a_4(64-2z)=0.

Rearrange:

a4(642z)=4a3(2z1).a_4(64-2z) = 4a_3(2z-1).

Substitute a3=0.7MeVa_3 = 0.7\,\text{MeV} and a4=23MeVa_4 = 23\,\text{MeV}:

23(642z)=4(0.7)(2z1)23(642z)=2.8(2z1).23(64-2z) = 4(0.7)(2z-1) \quad \Longrightarrow \quad 23(64-2z) = 2.8(2z-1).

Expanding:

147246z=5.6z2.8,1472 - 46z = 5.6z - 2.8, 1472+2.8=51.6z,1472 + 2.8 = 51.6z, 51.6z=1474.8,51.6z = 1474.8, z1474.851.628.6.z \approx \frac{1474.8}{51.6} \approx 28.6.

Since zz must be an integer, the optimum zz is approximately 29.