Solveeit Logo

Question

Physics Question on Gravitation

According to Kepler's law of planetary motion if TT represents time period and rr is orbital radius, then for two planets these are related as :

A

(T1T2)3=(r1r2)2{{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{3}}={{\left( \frac{{{r}_{1}}}{{{r}_{2}}} \right)}^{2}}

B

(T1T2)32=r1r2{{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{\frac{3}{2}}}=\frac{{{r}_{1}}}{{{r}_{2}}}

C

(T1T2)4=(r1r2)3{{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{4}}={{\left( \frac{{{r}_{1}}}{{{r}_{2}}} \right)}^{3}}

D

(T1T2)=(r1r2)32\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)={{\left( \frac{{{r}_{1}}}{{{r}_{2}}} \right)}^{\frac{3}{2}}}

Answer

(T1T2)=(r1r2)32\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)={{\left( \frac{{{r}_{1}}}{{{r}_{2}}} \right)}^{\frac{3}{2}}}

Explanation

Solution

T2r3{{T}^{2}}\propto {{r}^{3}} \Rightarrow (T1T2)2=(r1r2)3{{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{2}}={{\left( \frac{{{r}_{1}}}{{{r}_{2}}} \right)}^{3}}