Solveeit Logo

Question

Physics Question on Wave characteristics

According to Heisenberg's uncertainty principle, the product of uncertainties in position and velocities for an electron of mass 9.1×1031kg9.1\times {{10}^{-31}}\,kg is:

A

2.8×103m2s12.8\times {{10}^{-3}}\,{{m}^{2}}\,{{s}^{-1}}

B

3.8×105m2s13.8\times {{10}^{-5}}\,{{m}^{2}}\,{{s}^{-1}}

C

5.8×105m2s15.8\times {{10}^{-5}}\,{{m}^{2}}\,{{s}^{-1}}

D

6.8×106m2s16.8\times {{10}^{-6}}\,{{m}^{2}}\,{{s}^{-1}}

Answer

5.8×105m2s15.8\times {{10}^{-5}}\,{{m}^{2}}\,{{s}^{-1}}

Explanation

Solution

We will use formula Δx×Δp=h4π\Delta x \times \Delta p=\frac{h}{4 \pi} to solve problem.
Δx×Δp=h4π\Delta x \times \Delta p=\frac{h}{4 \pi}
Δx×mΔv=h4π\Delta x \times m \Delta v=\frac{h}{4 \pi}
Δx×Δv=h4πm\Delta x \times \Delta v=\frac{h}{4 \pi m}
Δx=\Delta x= uncertainty in position
Δv=\Delta v= uncertainty in velocity
h=h= Planck's constant
=6.63×1034kgm2s1=6.63 \times 10^{-34} \,kg\, m ^{2} \,s ^{-1}
m=m= mass of electron
=9.1×1031kg=9.1 \times 10^{-31} \,kg
Δx×Δv=6.63×10344×3.14×9.1×1031\therefore {\Delta} x \times \Delta v=\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}}
=5.8×105m2s1=5.8 \times 10^{-5} \,m ^{2} \,s ^{-1}