Solveeit Logo

Question

Question: According to Bohr's theory, the expressions for the kinetic and potential energy of an electron revo...

According to Bohr's theory, the expressions for the kinetic and potential energy of an electron revolving in an orbit is given respectively by.

A

+e28πε0r+ \frac{e^{2}}{8\pi\varepsilon_{0}r}and e24πε0r- \frac{e^{2}}{4\pi\varepsilon_{0}r}

B

+8πε0e2r+ \frac{8\pi\varepsilon_{0}e^{2}}{r}and4πε0e2r- \frac{4\pi\varepsilon_{0}e^{2}}{r}

C

e28πε0r- \frac{e^{2}}{8\pi\varepsilon_{0}r}and e24πε0r- \frac{e^{2}}{4\pi\varepsilon_{0}r}

D

+e28πε0r+ \frac{e^{2}}{8\pi\varepsilon_{0}r}and +e24πε0r+ \frac{e^{2}}{4\pi\varepsilon_{0}r}

Answer

+e28πε0r+ \frac{e^{2}}{8\pi\varepsilon_{0}r}and e24πε0r- \frac{e^{2}}{4\pi\varepsilon_{0}r}

Explanation

Solution

P.E.=ke2r=e24πε0r= - \frac{ke^{2}}{r} = - \frac{e^{2}}{4\pi\varepsilon_{0}r}; K.E.=12(P.E.)=e28πε0r= - \frac{1}{2}(\text{P.E.}) = \frac{e^{2}}{8\pi\varepsilon_{0}r}