Solveeit Logo

Question

Chemistry Question on Bohr’s Model for Hydrogen Atom

According to Bohr's atomic theory :- (A) Kinetic energy of electron is Z2n2\propto \frac{ Z ^{2}}{ n ^{2}}. (B) The product of velocity (v) of electron and principal quantum number (n), 'vn' Z2\propto Z ^{2}. (C) Frequency of revolution of electron in an orbit is Z3n3\propto \frac{ Z ^{3}}{ n ^{3}}. (D) Coulombic force of attraction on the electron is Z3n4\propto \frac{ Z ^{3}}{ n ^{4}}. Choose the most appropriate answer from the options given below:

A

(C) Only

B

(A) Only

C

(A), (C) and (D) only

D

(A) and (D) only

Answer

(A) and (D) only

Explanation

Solution

According to Bohr's theory :

(A) KE=13.6z2n2eV atom KE =13.6 \frac{ z ^{2}}{ n ^{2}} \frac{ eV }{\text { atom }}
KEαz2n2\Rightarrow KE \alpha \frac{ z ^{2}}{ n ^{2}}

(B) speed of eαzne ^{-} \alpha \frac{ z }{ n }
v×nαz\therefore v \times n \alpha z

(C) Frequency of revolution of e=v2πre ^{-}=\frac{ v }{2 \pi r }
\therefore frequency αz2n3\alpha \frac{ z ^{2}}{ n ^{3}}

(D) F=kq1q2r2=kze2r2F =\frac{ kq _{1} q _{2}}{ r ^{2}}=\frac{ kze ^{2}}{ r ^{2}}
\left\\{ r \alpha \frac{ n ^{2}}{ z }\right.
Fαz(n2z)2\Rightarrow F \alpha \frac{ z }{\left(\frac{ n ^{2}}{ z }\right)^{2}}
Fαz3n4\Rightarrow F \alpha \frac{ z ^{3}}{ n ^{4}}