Solveeit Logo

Question

Question: Acceleration of a particle of mass 2 kg, moving in space is given as $\vec{a} = (-9x\hat{i} - 16y\ha...

Acceleration of a particle of mass 2 kg, moving in space is given as a=(9xi^16yj^)m/s2\vec{a} = (-9x\hat{i} - 16y\hat{j})m/s^2. Initially the particle is at origin and its velocity is v0=(3i^+4j^+12k^)m/s\vec{v_0} = (3\hat{i} + 4\hat{j} + \frac{1}{\sqrt{2}}\hat{k})m/s. At time t=π12sect = \frac{\pi}{12}sec, the kinetic energy of the particle is ______ Joule.

Answer

9 Joule

Explanation

Solution

The particle has mass m=2m = 2 kg and an acceleration given by

a=9xi^16yj^.\vec{a} = -9x\,\hat{i} - 16y\,\hat{j}.

This implies:

  • In the xx-direction:
d2xdt2=9x,\frac{d^2x}{dt^2} = -9x,

with x(0)=0x(0)=0 and vx(0)=3v_x(0)=3. The solution is simple harmonic motion:

x(t)=vx(0)3sin(3t)=sin(3t),x(t) = \frac{v_x(0)}{3}\sin(3t) = \sin(3t),

so the velocity is

vx(t)=3cos(3t).v_x(t)=3\cos(3t).
  • In the yy-direction:
d2ydt2=16y,\frac{d^2y}{dt^2} = -16y,

with y(0)=0y(0)=0 and vy(0)=4v_y(0)=4. Thus,

y(t)=vy(0)4sin(4t)=sin(4t),y(t) = \frac{v_y(0)}{4}\sin(4t) = \sin(4t),

and

vy(t)=4cos(4t).v_y(t)=4\cos(4t).
  • In the zz-direction, there is no acceleration so:
vz(t)=12(constant).v_z(t) = \frac{1}{\sqrt{2}} \quad (\text{constant}).

At t=π12t = \frac{\pi}{12} seconds:

vx=3cos(3π12)=3cos(π4)=322=322,v_x = 3\cos\left(3\cdot\frac{\pi}{12}\right)=3\cos\left(\frac{\pi}{4}\right)= 3\cdot \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}, vy=4cos(4π12)=4cos(π3)=412=2,v_y = 4\cos\left(4\cdot\frac{\pi}{12}\right)=4\cos\left(\frac{\pi}{3}\right)= 4\cdot \frac{1}{2}= 2, vz=12.v_z = \frac{1}{\sqrt{2}}.

The kinetic energy (KE) is given by:

KE=12m(vx2+vy2+vz2).\text{KE}=\frac{1}{2} m (v_x^2+v_y^2+v_z^2).

Compute each velocity squared:

vx2=(322)2=184=92,v_x^2=\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{18}{4}=\frac{9}{2}, vy2=22=4,v_y^2=2^2=4, vz2=(12)2=12.v_z^2=\left(\frac{1}{\sqrt{2}}\right)^2=\frac{1}{2}.

Thus,

vx2+vy2+vz2=92+4+12=9+12+4=102+4=5+4=9.v_x^2+v_y^2+v_z^2 = \frac{9}{2}+4+\frac{1}{2} = \frac{9+1}{2}+4= \frac{10}{2} +4 =5+4=9.

Now,

KE=12×2×9=9 Joule.\text{KE}=\frac{1}{2}\times2\times 9 =9\text{ Joule}.