Solveeit Logo

Question

Question: Find the set of values of 'a' for which the equation $2 \cos^{-1}x = a + a^2 (\cos^{-1}x)^{-1}$ poss...

Find the set of values of 'a' for which the equation 2cos1x=a+a2(cos1x)12 \cos^{-1}x = a + a^2 (\cos^{-1}x)^{-1} posses a solution.

Answer

[-2\pi, \pi]

Explanation

Solution

Let y=cos1xy = \cos^{-1}x. The range of cos1x\cos^{-1}x is [0,π][0, \pi], so y[0,π]y \in [0, \pi]. The given equation transforms to 2y=a+a2y2y = a + \frac{a^2}{y}.

Case 1: y=0y = 0. If y=0y=0, then cos1x=0\cos^{-1}x = 0, which means x=1x=1. Substituting y=0y=0 into 2y=a+a2y2y = a + \frac{a^2}{y} yields 0=a+a200 = a + \frac{a^2}{0}. If a0a \neq 0, a20\frac{a^2}{0} is undefined, so this is impossible. If a=0a = 0, the original equation becomes 2cos1x=02 \cos^{-1}x = 0, which implies cos1x=0\cos^{-1}x = 0, so x=1x=1. This is a valid solution. Thus, a=0a=0 is a possible value.

Case 2: y(0,π]y \in (0, \pi]. Since y0y \neq 0, we can multiply by yy: 2y2=ay+a22y^2 = ay + a^2. Rearranging gives a quadratic equation in yy: 2y2aya2=02y^2 - ay - a^2 = 0. Using the quadratic formula, y=a±(a)24(2)(a2)4=a±a2+8a24=a±9a24=a±3a4y = \frac{a \pm \sqrt{(-a)^2 - 4(2)(-a^2)}}{4} = \frac{a \pm \sqrt{a^2 + 8a^2}}{4} = \frac{a \pm \sqrt{9a^2}}{4} = \frac{a \pm 3|a|}{4}. The two potential roots are y1=a+3a4y_1 = \frac{a + 3|a|}{4} and y2=a3a4y_2 = \frac{a - 3|a|}{4}. We need at least one root to be in (0,π](0, \pi].

Subcase 2.1: a>0a > 0. Then a=a|a| = a. y1=a+3a4=4a4=ay_1 = \frac{a + 3a}{4} = \frac{4a}{4} = a. For y1y_1 to be in (0,π](0, \pi], we need 0<aπ0 < a \le \pi. y2=a3a4=2a4=a2y_2 = \frac{a - 3a}{4} = \frac{-2a}{4} = -\frac{a}{2}. Since a>0a>0, y2<0y_2 < 0, so it's not in (0,π](0, \pi]. Thus, for a>0a > 0, the condition is a(0,π]a \in (0, \pi].

Subcase 2.2: a<0a < 0. Then a=a|a| = -a. y1=a+3(a)4=2a4=a2y_1 = \frac{a + 3(-a)}{4} = \frac{-2a}{4} = -\frac{a}{2}. For y1y_1 to be in (0,π](0, \pi], we need 0<a2π0 < -\frac{a}{2} \le \pi. This implies 0<a2π0 < -a \le 2\pi, so 2πa<0-2\pi \le a < 0. y2=a3(a)4=4a4=ay_2 = \frac{a - 3(-a)}{4} = \frac{4a}{4} = a. Since a<0a<0, y2y_2 is not in (0,π](0, \pi]. Thus, for a<0a < 0, the condition is a[2π,0)a \in [-2\pi, 0).

Combining the results for y(0,π]y \in (0, \pi]: a[2π,0)(0,π]a \in [-2\pi, 0) \cup (0, \pi]. Including the result from Case 1 (a=0a=0), the complete set of values for 'a' is [2π,0)(0,π]{0}=[2π,π][-2\pi, 0) \cup (0, \pi] \cup \{0\} = [-2\pi, \pi].