Solveeit Logo

Question

Question: ABCDE is a pentagon. If the sum of the vectors AB + AE + BC + DC + ED + AC = \[\lambda \]AC , then f...

ABCDE is a pentagon. If the sum of the vectors AB + AE + BC + DC + ED + AC = λ\lambda AC , then find the value of λ\lambda .

Explanation

Solution

Here in this problem applying the triangle law of vector addition which is says that addition of any the vectors in one particular order gives a null vector, i.e, in a triangle the sides of the vectors add to give a zero vector whereas the addition of the two vectors gives the resultant vector. Therefore, the set of vectors of addition in a closed polygon, the resultant of these vectors will be a null vector.

Here AB+BC+CA=0\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = 0, addition of the vectors in one order of a closed polygon gives a null vector
CA=AC\because \overrightarrow {CA} = - \overrightarrow {AC}
AB+BCAC=0\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {AC} = 0
AB+BC=AC\therefore \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC}

Complete step-by-step solution:
AB+AE+BC+DC+ED+AC\Rightarrow \overrightarrow {AB} + \overrightarrow {AE} + \overrightarrow {BC} + \overrightarrow {DC} + \overrightarrow {ED} + \overrightarrow {AC}
Here consider the sides AB,BCAB,BC and CACA forms a triangle,
Therefore the addition of the vectors AB+BC\overrightarrow {AB} + \overrightarrow {BC} gives,
From the figure it is visible that the resultant of
AB+BC=AC\therefore \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC}
Now consider the vector terms AE+ED+DC\overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DC} ,
As it forms a quadrilateral with sides AE,ED,DCAE,ED,DC and CACA.
AE+ED+DC+CA=0\therefore \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DC} + \overrightarrow {CA} = 0
AE+ED+DC=AC\Rightarrow \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DC} = \overrightarrow {AC}
Now consider L.H.S = AB+AE+BC+DC+ED+AC\overrightarrow {AB} + \overrightarrow {AE} + \overrightarrow {BC} + \overrightarrow {DC} + \overrightarrow {ED} + \overrightarrow {AC}
Grouping the terms together,
AB+BC+AE+ED+DC+AC\Rightarrow \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DC} + \overrightarrow {AC}
AC+AC+AC\Rightarrow \overrightarrow {AC} + \overrightarrow {AC} + \overrightarrow {AC}
3AC\Rightarrow 3\overrightarrow {AC}
Now consider R.H.S = λAC\lambda \overrightarrow {AC}
3AC=λAC3\overrightarrow {AC} = \lambda \overrightarrow {AC}
λ=3\therefore \lambda = 3

The value of the λ=3\lambda = 3

Note: Remember when naming the vector AB = AB\overrightarrow {AB} , this means that the head of the vector is at A and the tail of the vector is at B. AB=BA\overrightarrow {AB} = B - A.
Also another point to be noted is that the direction of the vector changes when the sign changes, i.e, when AB=BA- \overrightarrow {AB} = \overrightarrow {BA} , here the tail of the vector is B and head becomes A.