Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

ABCDABCD is a trapezium such that ABAB and CDCD are parallel and BCBC \perp CDCD, if \angle ADB=θ,BC=pADB = \theta, BC = p and CD=qCD = q, then ABAB is equal to

A

(p2+q2)sinθpcosθ+qsinθ \frac{ (p^2 + q^2 ) \, sin \, \theta}{ p \, cos \, \theta + q \, sin \, \theta}

B

p2+q2cosθpcosθ+qsinθ \frac{ p^2 + q^2 \, cos \, \theta}{ p \, cos \, \theta + q \, sin \, \theta}

C

p2+q2p2cosθ+q2sinθ \frac{ p^2 + q^2}{ p^2 \, cos \, \theta + q^2 \, sin \, \theta}

D

(p2+q2)sinθ(pcosθ+qsinθ)2 \frac{ (p^2 + q^2) \, sin \, \theta}{ (p \, cos \, \theta + q \, sin \, \theta)^2}

Answer

(p2+q2)sinθpcosθ+qsinθ \frac{ (p^2 + q^2 ) \, sin \, \theta}{ p \, cos \, \theta + q \, sin \, \theta}

Explanation

Solution

Let AB = x
In DAM\triangle DAM, tan (πhetaα)=pxq (\pi - heta - \alpha) = \frac{p}{ x - q}
tan(heta+α)=pqx\Rightarrow tan ( heta + \alpha ) = \frac{p}{ q - x}
qxpcot(heta+α)\Rightarrow q - x \, p \, cot ( heta + \alpha)
x=qpcotheta+α)\Rightarrow x = q - p \, cot heta + \alpha)
= q - p (cothetacotα1cotα+cotheta)\bigg( \frac{ cot \, heta \, cot \, \alpha - 1}{ cot \, \alpha + cot \, heta } \bigg) \hspace25mm [cotα=qp]\Bigg [ \because \, cot \, \alpha = \frac{q}{p} \Bigg ]
= q - p (qpcotheta1qp+cotheta)=qp(qcothetapq+pcotheta) \Bigg ( \frac{ \frac{q}{p} cot \, heta - 1 }{ \frac{q}{p} + cot \, heta }\Bigg ) = q - p \bigg( \frac{ q \, cot \, heta - p }{ q + p cot \, heta } \bigg)
= q - p (qcoshetapsinhetaqsinheta+pcosheta)\bigg ( \frac{ q \, cos \, heta - p sin \, heta }{ q \, sin \, heta + p \, cos \, heta }\bigg)
x=q2sinheta+pqcoshetapqcosheta+p2sinhetapcosheta+qsinheta\Rightarrow x = \frac{ q^2 \, sin \, heta + pq \, cos \, heta - pq \, cos \, heta + p^2 \, sin \, heta }{ p \, cos \, heta + q \, sin \, heta }
AB=(p2+q2)sinhetapcosheta+qsinheta\Rightarrow AB = \frac{(p^2 + q^2) \, sin \, heta }{ p \, cos \, heta + q \, sin \, heta }
Alternate Solution
Applying sine rule in ABD\triangle ABD,
ABsinheta=p2+q2sinπ(heta+α)\frac{AB}{sin \, heta } = \frac{ \sqrt{ p^2 + q^2}}{ sin \, \\{ \pi - ( heta + \alpha) \\}}
ABsinheta=p2+q2sin(heta+α)\Rightarrow \frac{ AB}{ sin \, heta } = \frac{ \sqrt { p^2 + q^2 }}{ sin \, ( heta + \alpha)}
AB=p2+q2sinhetacosα+coshetasinα[cosα=qp2+q2]\Rightarrow AB = \frac{ \sqrt{ p^2 + q^2 }}{ sin \, heta cos \alpha + cos heta sin \alpha } \bigg [ \because cos \, \alpha = \frac{ q}{ \sqrt{p^2 + q^2}} \bigg ]
= (p2+q2)sin?pcos?+qsin?=pp2+q2\frac{(p^2 + q^2 ) \, sin \, ? }{ p \, cos \, ? + q \, sin \, ?} = \frac{p}{\sqrt{ p^2 + q^2 }}