Question
Mathematics Question on Trigonometric Functions
ABCD is a trapezium such that AB and CD are parallel and BC ⊥ CD, if ∠ ADB=θ,BC=p and CD=q, then AB is equal to
pcosθ+qsinθ(p2+q2)sinθ
pcosθ+qsinθp2+q2cosθ
p2cosθ+q2sinθp2+q2
(pcosθ+qsinθ)2(p2+q2)sinθ
pcosθ+qsinθ(p2+q2)sinθ
Solution
Let AB = x
In △DAM, tan (π−heta−α)=x−qp
⇒tan(heta+α)=q−xp
⇒q−xpcot(heta+α)
⇒x=q−pcotheta+α)
= q - p (cotα+cothetacothetacotα−1) \hspace25mm [∵cotα=pq]
= q - p (pq+cothetapqcotheta−1)=q−p(q+pcothetaqcotheta−p)
= q - p (qsinheta+pcoshetaqcosheta−psinheta)
⇒x=pcosheta+qsinhetaq2sinheta+pqcosheta−pqcosheta+p2sinheta
⇒AB=pcosheta+qsinheta(p2+q2)sinheta
Alternate Solution
Applying sine rule in △ABD,
sinhetaAB=sinπ−(heta+α)p2+q2
⇒sinhetaAB=sin(heta+α)p2+q2
⇒AB=sinhetacosα+coshetasinαp2+q2[∵cosα=p2+q2q]
= pcos?+qsin?(p2+q2)sin?=p2+q2p