Solveeit Logo

Question

Question: ABCD is a square whose vertices are A(0, 0), B(2, 0), C(2, 2) and D(0, 2). The square is rotated in ...

ABCD is a square whose vertices are A(0, 0), B(2, 0), C(2, 2) and D(0, 2). The square is rotated in the XY-plane through an angle 300 in the anti-clockwise sense about an axis passing though A perpendicular to the XY-plane. The equation of the diagonal BD of this rotated square is-

A

(2 –3\sqrt{3}) x + y = 23\sqrt{3} – 2

B

(2 +3\sqrt{3}) x + y = 23\sqrt{3} – 1

C

(2 –3\sqrt{3}) x – y = 23\sqrt{3} – 4

D

(2 –3\sqrt{3}) x – y = 23\sqrt{3} + 1

Answer

(2 –3\sqrt{3}) x + y = 23\sqrt{3} – 2

Explanation

Solution

We have, (see fig.)

B ŗ (2 cos 300, 2 sin 300) = (3\sqrt{3}, 1)

D ŗ (–2 sin 300 , 2 cos 300) = (–1,3\sqrt{3})

Hence, equation of BD is

y – 1 = 31(3+1)\frac{\sqrt{3} - 1}{- (\sqrt{3} + 1)} (x – 3\sqrt{3})

= (3\sqrt{3}– 2) (x – 3\sqrt{3})

[(31)2(3+1)(31)=4232=23]\left\lbrack \frac{(\sqrt{3} - 1)^{2}}{(\sqrt{3} + 1)(\sqrt{3} - 1)} = \frac{4 - 2\sqrt{3}}{2} = 2–\sqrt{3} \right\rbrack

i.e. (2 – 3\sqrt{3}) x + y = 23\sqrt{3} – 2.