Solveeit Logo

Question

Question: ABCD is a parallelogram in which the coordinates of \(A,B\) and \(C\) are \(\left( 1,2 \right)\) , \...

ABCD is a parallelogram in which the coordinates of A,BA,B and CC are (1,2)\left( 1,2 \right) , (7,1)\left( 7,-1 \right) and (1,2)\left( -1,-2 \right) respectively.
Calculate the area of the parallelogram.

Explanation

Solution

Here, to calculate the area of parallelogram, firstly we will divide this parallelogram into two triangles by drawing a diagonal line and will find the area of triangle by using the formula that is 12x1(y2y3)+x2(y3y1)+x3(y1y2)\frac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right| . Since, the diagonal divides parallelograms into two equal triangles. So, the area of the triangle is double the area of the triangle.

Complete step-by-step answer:
Since, we need to find the area of the parallelogram, we draw a diagonal line from point AA to point CC . It will divide the parallelogram into two equal triangles that are ΔABC\Delta ABC and ΔADC\Delta ADC . Since, area(ΔABC)=area(ΔADC)area\left( \Delta ABC \right)=area\left( \Delta ADC \right) . So, we will use the formula to get the area of ΔABC\Delta ABC as:
area(ΔABC)=12x1(y2y3)+x2(y3y1)+x3(y1y2)\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|

Here, we will use the coordinates of A,BA,B and CC as (x1,y1),(x2,y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right) and (x3,y3)\left( {{x}_{3}},{{y}_{3}} \right) respectively.
area(ΔABC)=121(1(2))+7(22)+(1)(2(1))\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| 1\left( -1-\left( -2 \right) \right)+7\left( -2-2 \right)+\left( -1 \right)\left( 2-\left( -1 \right) \right) \right|
Now, we will do required calculation as:
area(ΔABC)=121(1+2)+7(22)1(2+1)\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| 1\left( -1+2 \right)+7\left( -2-2 \right)-1\left( 2+1 \right) \right|
Now, we will do the calculation for small brackets as:
area(ΔABC)=121(1)+7(4)1(3)\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| 1\left( 1 \right)+7\left( -4 \right)-1\left( 3 \right) \right|
Here, we will open the bracket as:
area(ΔABC)=121283\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| 1-28-3 \right|
Now, we will precede the calculation as:
area(ΔABC)=12131\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| 1-31 \right|
area(ΔABC)=1230\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\left| -30 \right|
Here, we will remove mod and the value of mod is always positive as:
area(ΔABC)=12×30\Rightarrow area\left( \Delta ABC \right)=\dfrac{1}{2}\times 30
Now, we will have the area of triangle from the above step as:
area(ΔABC)=15\Rightarrow area\left( \Delta ABC \right)=15
As we know that the diagonal of the parallelogram divides the parallelogram into two equal triangles. So, the area of the Parallelogram is double the area of any one triangle as:
Area of parallelogram =2×area(ΔABC)\Rightarrow \text{Area of parallelogram }=2\times area\left( \Delta ABC \right)
Now, we will use the area of triangle in the above formula as:
Area of parallelogram =2×15\Rightarrow \text{Area of parallelogram }=2\times 15
Here, we will complete the calculation as:
Area of parallelogram =30\Rightarrow \text{Area of parallelogram }=30
Hence, the area of parallelogram is 3030 square unit.

Note: Since, we does not have the coordinates of point DD , otherwise we can use the formula from the diagram as the area of parallelogram is equal to the sum of the area of both triangles as:
area of ABCD=area(ΔABC)+area(ΔADC)\Rightarrow area\text{ }of\text{ }\square ABCD=area\left( \Delta ABC \right)+area\left( \Delta ADC \right)

Or, we can use the formula of the area of parallelogram as:
area of ABCD=base×height\Rightarrow area\text{ }of\text{ }\square ABCD=base\times height