Question
Mathematics Question on Angle Subtended by an Arc of a Circle
ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠ DBC = 70°, ∠ BAC is 30°, find ∠ BCD. Further, if AB = BC, find ∠ ECD.
Answer
∠CDB = ∠BAC = 30∘ .....(i) (Angles in the same segment of a circle are equal)
∠DBC = 70∘ .....(ii)
In ΔBCD,
∠BCD + ∠DBC + ∠CDB = 180∘ (Sum of all angles of a triangle is 180∘)
∠BCD + 70∘ + 30∘ = 180∘ (using (i) and (ii))
∠BCD = 180∘ - 100∘ = 80∘ .....(iii)
In ΔABC,
Given: AB= BC
So, ∠BCA = ∠BAC = 30∘.....(iv) (Angles opposite to equal sides of a triangle are equal)
Now, ∠BCD = 80∘ from (iii)
∠BCA + ∠ECD = 80∘
30∘ + ∠ECD = 80∘
∴ ∠ECD = 50∘