Solveeit Logo

Question

Question: ABCD is a cyclic quadrilateral. Find the angles of the cyclic quadrilateral. ![](data:image/png;...

ABCD is a cyclic quadrilateral. Find the angles of the cyclic quadrilateral.

Explanation

Solution

Use the basic property of cyclic quadrilateral which is given as “sum of opposite angles of any cyclic quadrilateral is 180180{}^\circ . Solve equations to get ‘x’ and ‘y’.

Complete step-by-step answer:
Cyclic quadrilateral ABCD is given as:-

We know the property of a cyclic quadrilateral that the sum of opposite angles is 180180{}^\circ . It means the sum of B\angle B and D\angle D is 180180{}^\circ , similarly, the sum of A\angle A and C\angle C is 180180{}^\circ . Hence from the diagram, we can write two equations as

A+C=180\angle A+\angle C=180{}^\circ

4y+20+(4x)=1804y+20{}^\circ +(-4x)=180{}^\circ

Or

4x+4y=18020-4x+4y=180-20

4x+4y=160\Rightarrow -4x+4y=160

On dividing the whole equation by 4, we get

x+y=40(1)-x+y=40\ldots \ldots (1)

Now, another equation can be written as

B+D=180\angle B+\angle D=180{}^\circ

(3y5)+(7x+5)=180\Rightarrow (3y-5)+(-7x+5)=180{}^\circ

7x+3y5+5=180\Rightarrow -7x+3y-5+5=180{}^\circ

7x+3y=180(2)\Rightarrow -7x+3y=180{}^\circ \ldots \ldots (2)

Now, we can use the substitution method to solve equations (1) and (2).

We have x+y=40-x+y=40 from equation (1).

So, value of y can be written in terms of x as,

y=x+40(3)y=x+40\ldots \ldots (3)

We can put value of ‘y’ from equation (3) in equation (2) i.e. 7x+3y=180-7x+3y=180;

Hence, we get

7x+3(x+40)=180-7x+3\left( x+40 \right)=180

7x+3x+120=180\Rightarrow -7x+3x+120=180

4x=60\Rightarrow -4x=60

x=604=15\Rightarrow x=-\dfrac{60}{4}=-15

So, we get x=15x=-15

Now, we can calculate value of ‘y’ by substituting x=15x=-15 in equation (3), we get value of y as

y=15+40=25y=-15+40=25

Hence we get,

x=15,y=25x=-15,y=25

Now, angles A, B, C, D can be given as

A=4y+20=4(25)+20=120\angle A=4y+20=4\left( 25 \right)+20=120{}^\circ

B=3y5=3(25)5=70\angle B=3y-5=3\left( 25 \right)-5=70{}^\circ

C=4x=4(15)=60\angle C=-4x=-4\left( -15 \right)=60{}^\circ

D=7x+5=7(15)+5=110\angle D=-7x+5=-7\left( -15 \right)+5=110{}^\circ

Hence, we get angles of given cyclic quadrilateral be 120,70,60,110120{}^\circ ,70{}^\circ ,60{}^\circ ,110{}^\circ .

Note: One can prove the given property of cyclic quadrilateral i.e. sum of opposite angles in cyclic quadrilateral is 180180{}^\circ in following way:-


As we know that angles in the same segment are equal.
Hence, 1=6,5=8,2=4,7=3\angle 1=\angle 6,\angle 5=\angle 8,\angle 2=\angle 4,\angle 7=\angle 3.
Now, we know that the sum of interior angles of a quadrilateral is 360360{}^\circ .
Use A+B+C+D=360\angle A+\angle B+\angle C+\angle D=360{}^\circ and we have equations to prove A+C=180\angle A+\angle C=180{}^\circ and B+D=180\angle B+\angle D=180{}^\circ .
One cannot get angles by using the property of quadrilateral that the sum of all interior angles is 360360{}^\circ .