Solveeit Logo

Question

Question: A parallelogram has area 40 units. If $AB = \frac{41}{4}$, then BC, Find the minimum possible value ...

A parallelogram has area 40 units. If AB=414AB = \frac{41}{4}, then BC, Find the minimum possible value of the square of its longer diagonal; (d2=abd^2 = \frac{a}{b}) and find ab|a-b|

Answer

3208465

Explanation

Solution

Let the sides of the parallelogram be aa and bb, and let θ\theta be the angle between them. We are given a=AB=414a = AB = \frac{41}{4} and the Area =40= 40. The area of a parallelogram is given by Area=absinθArea = ab \sin\theta. So, (414)bsinθ=40(\frac{41}{4}) b \sin\theta = 40, which implies bsinθ=16041b \sin\theta = \frac{160}{41}.

The squares of the diagonals (d12,d22d_1^2, d_2^2) of a parallelogram are given by: d12=a2+b22abcosθd_1^2 = a^2 + b^2 - 2ab \cos\theta d22=a2+b2+2abcosθd_2^2 = a^2 + b^2 + 2ab \cos\theta

The square of the longer diagonal, dlong2d_{long}^2, is a2+b2+2abcosθa^2 + b^2 + 2ab |\cos\theta|.

We have a=414a = \frac{41}{4}, so a2=168116a^2 = \frac{1681}{16}. From bsinθ=16041b \sin\theta = \frac{160}{41}, we have b=16041sinθb = \frac{160}{41 \sin\theta}. So, b2=256001681sin2θb^2 = \frac{25600}{1681 \sin^2\theta}. Also, ab=(414)(16041sinθ)=40sinθab = (\frac{41}{4}) (\frac{160}{41 \sin\theta}) = \frac{40}{\sin\theta}.

Substituting these into dlong2d_{long}^2: dlong2=168116+256001681sin2θ+2(40sinθ)cosθd_{long}^2 = \frac{1681}{16} + \frac{25600}{1681 \sin^2\theta} + 2 \left(\frac{40}{\sin\theta}\right) |\cos\theta| dlong2=168116+256001681sin2θ+80cosθsinθd_{long}^2 = \frac{1681}{16} + \frac{25600}{1681 \sin^2\theta} + \frac{80 |\cos\theta|}{\sin\theta}

Let u=cotθu = |\cot\theta|. Since 0<θ<π0 < \theta < \pi, sinθ>0\sin\theta > 0. We know 1sin2θ=1+cot2θ=1+u2\frac{1}{\sin^2\theta} = 1 + \cot^2\theta = 1+u^2 and cosθsinθ=cotθ=u\frac{|\cos\theta|}{\sin\theta} = |\cot\theta| = u. Substituting these: dlong2=168116+256001681(1+u2)+80ud_{long}^2 = \frac{1681}{16} + \frac{25600}{1681} (1+u^2) + 80u

Let f(u)=256001681(1+u2)+80u=256001681u2+80u+256001681f(u) = \frac{25600}{1681} (1+u^2) + 80u = \frac{25600}{1681} u^2 + 80u + \frac{25600}{1681}. This is a quadratic in uu. Since u=cotθu = |\cot\theta|, u0u \ge 0. The parabola opens upwards, and its vertex is at u=802256001681=1681640u = -\frac{80}{2 \cdot \frac{25600}{1681}} = -\frac{1681}{640}. For u0u \ge 0, the minimum value of f(u)f(u) occurs at u=0u=0. u=0u=0 implies cotθ=0\cot\theta = 0, so θ=π2\theta = \frac{\pi}{2}. This means the parallelogram is a rectangle.

When θ=π2\theta = \frac{\pi}{2}, sinθ=1\sin\theta = 1 and cosθ=0\cos\theta = 0. b=16041sin(π2)=16041b = \frac{160}{41 \sin(\frac{\pi}{2})} = \frac{160}{41}. The minimum square of the longer diagonal is: dmin2=a2+b2=(414)2+(16041)2d_{min}^2 = a^2 + b^2 = \left(\frac{41}{4}\right)^2 + \left(\frac{160}{41}\right)^2 dmin2=168116+256001681d_{min}^2 = \frac{1681}{16} + \frac{25600}{1681} dmin2=16812+25600×1616×1681=2825761+40960026896=323536126896d_{min}^2 = \frac{1681^2 + 25600 \times 16}{16 \times 1681} = \frac{2825761 + 409600}{26896} = \frac{3235361}{26896}.

We are given d2=abd^2 = \frac{a}{b}, so a=3235361a = 3235361 and b=26896b = 26896. We need to find ab|a-b|. ab=323536126896=3208465|a-b| = |3235361 - 26896| = 3208465.