Solveeit Logo

Question

Question: abc>0 and a+b+c<0 and |a|/a + |b|/b + |c|/c =x find x³-6x²+11x-6...

abc>0 and a+b+c<0 and |a|/a + |b|/b + |c|/c =x find x³-6x²+11x-6

Answer

-24

Explanation

Solution

The given conditions are:

  1. abc>0abc > 0
  2. a+b+c<0a+b+c < 0
  3. x=aa+bb+ccx = \frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c}

The term yy\frac{|y|}{y} is equal to 1 if y>0y > 0 and -1 if y<0y < 0 (for y0y \neq 0).
So, xx is the sum of three terms, each being either 1 or -1.

Let's analyze the signs of a, b, and c based on the given conditions.
Condition 1, abc>0abc > 0, implies either all three numbers are positive, or one number is positive and the other two are negative.

Case 1: a>0a > 0, b>0b > 0, c>0c > 0.
In this case, a+b+c>0a+b+c > 0. This contradicts condition 2 (a+b+c<0a+b+c < 0). So, this case is not possible.

Case 2: One of the numbers is positive, and the other two are negative.
Let's consider the possibilities:

  • Possibility 2a: a>0a > 0, b<0b < 0, c<0c < 0.
    abc=(+)()()=+>0abc = (+)(-) (-) = + > 0. This satisfies condition 1.
    a+b+ca+b+c can be negative. For example, if a=1,b=2,c=2a=1, b=-2, c=-2, then a+b+c=122=3<0a+b+c = 1-2-2 = -3 < 0. This satisfies condition 2.
    This combination of signs is possible.

  • Possibility 2b: a<0a < 0, b>0b > 0, c<0c < 0.
    abc=()(+)()=+>0abc = (-) (+) (-) = + > 0. This satisfies condition 1.
    a+b+ca+b+c can be negative. For example, if a=2,b=1,c=2a=-2, b=1, c=-2, then a+b+c=2+12=3<0a+b+c = -2+1-2 = -3 < 0. This satisfies condition 2.
    This combination of signs is possible.

  • Possibility 2c: a<0a < 0, b<0b < 0, c>0c > 0.
    abc=()()(+)=+>0abc = (-) (-) (+) = + > 0. This satisfies condition 1.
    a+b+ca+b+c can be negative. For example, if a=2,b=2,c=1a=-2, b=-2, c=1, then a+b+c=22+1=3<0a+b+c = -2-2+1 = -3 < 0. This satisfies condition 2.
    This combination of signs is possible.

The only scenario consistent with both conditions abc>0abc > 0 and a+b+c<0a+b+c < 0 is that exactly one of the numbers a, b, c is positive and the other two are negative.

Now let's find the value of x in this scenario.
x=aa+bb+ccx = \frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c}.
If a number is positive, its corresponding term is 1.
If a number is negative, its corresponding term is -1.
In the scenario where one number is positive and two are negative, the terms in the sum for x will be one 1 and two -1s.
For example, if a>0,b<0,c<0a > 0, b < 0, c < 0, then aa=1,bb=1,cc=1\frac{|a|}{a}=1, \frac{|b|}{b}=-1, \frac{|c|}{c}=-1.
x=1+(1)+(1)=111=1x = 1 + (-1) + (-1) = 1 - 1 - 1 = -1.
If a<0,b>0,c<0a < 0, b > 0, c < 0, then aa=1,bb=1,cc=1\frac{|a|}{a}=-1, \frac{|b|}{b}=1, \frac{|c|}{c}=-1.
x=1+1+(1)=1x = -1 + 1 + (-1) = -1.
If a<0,b<0,c>0a < 0, b < 0, c > 0, then aa=1,bb=1,cc=1\frac{|a|}{a}=-1, \frac{|b|}{b}=-1, \frac{|c|}{c}=1.
x=1+(1)+1=1x = -1 + (-1) + 1 = -1.

In all valid cases, the value of x is -1.

Now we need to find the value of the expression x36x2+11x6x^3 - 6x^2 + 11x - 6 when x=1x = -1.
Substitute x=1x = -1 into the expression:
(1)36(1)2+11(1)6(-1)^3 - 6(-1)^2 + 11(-1) - 6
=16(1)116= -1 - 6(1) - 11 - 6
=16116= -1 - 6 - 11 - 6
=7116= -7 - 11 - 6
=186= -18 - 6
=24= -24.

Alternatively, we can factor the polynomial P(x)=x36x2+11x6P(x) = x^3 - 6x^2 + 11x - 6. By testing small integer values, we find that P(1)=16+116=0P(1) = 1-6+11-6=0, P(2)=824+226=0P(2) = 8-24+22-6=0, and P(3)=2754+336=0P(3) = 27-54+33-6=0.
So the polynomial can be factored as (x1)(x2)(x3)(x-1)(x-2)(x-3).
Evaluating this at x=1x=-1:
(11)(12)(13)=(2)(3)(4)=6(4)=24(-1-1)(-1-2)(-1-3) = (-2)(-3)(-4) = 6(-4) = -24.

The final answer is 24\boxed{-24}.