Solveeit Logo

Question

Question: ABC is an isosceles triangle right angled at A. Forces of magnitude \(2 \sqrt { 2,5 }\) and 6 act ...

ABC is an isosceles triangle right angled at A. Forces of magnitude 22,52 \sqrt { 2,5 } and 6 act along BC,CA\overrightarrow { B C } , \overrightarrow { C A } and AB\overrightarrow { A B } respectively. The magnitude of their resultant force is

A

4

B

5

C

11+2211 + 2 \sqrt { 2 }

D

30

Answer

5

Explanation

Solution

Rcosθ=6cos0+22cos(180B)+5cos270R \cos \theta = 6 \cos 0 ^ { \circ } + 2 \sqrt { 2 } \cos \left( 180 ^ { \circ } - B \right) + 5 \cos 270 ^ { \circ }

Rcosθ=622cosBR \cos \theta = 6 - 2 \sqrt { 2 } \cos B …..(i)

Rsinθ=6sin0+22sin(180B)+5sin270R \sin \theta = 6 \sin 0 ^ { \circ } + 2 \sqrt { 2 } \sin \left( 180 ^ { \circ } - B \right) + 5 \sin 270 ^ { \circ }

Rsinθ=22sinB5R \sin \theta = 2 \sqrt { 2 } \sin B - 5 …..(ii)

From (i) and (ii),

R2=36+8cos2B242cosB+8sin2BR ^ { 2 } = 36 + 8 \cos ^ { 2 } B - 24 \sqrt { 2 } \cos B + 8 \sin ^ { 2 } B +25202sinB+ 25 - 20 \sqrt { 2 } \sin B

=61+8(cos2B+sin2B)242cosB202sinB= 61 + 8 \left( \cos ^ { 2 } B + \sin ^ { 2 } B \right) - 24 \sqrt { 2 } \cos B - 20 \sqrt { 2 } \sin B

\bullet \bullet ABC is a right angled isosceles triangle

i.e., B=C=45\angle B = \angle C = 45 ^ { \circ }

\therefore R2R ^ { 2 } =61+8(1)2421220212= 61 + 8 ( 1 ) - 24 \sqrt { 2 } \cdot \frac { 1 } { \sqrt { 2 } } - 20 \sqrt { 2 } \cdot \frac { 1 } { \sqrt { 2 } } =25= 25

R=5R = 5.