Solveeit Logo

Question

Question: ABC is an equilateral traing such that the vertices B & C on two parallel lines at a distance 6 If A...

ABC is an equilateral traing such that the vertices B & C on two parallel lines at a distance 6 If A lies between the parallel lines at a distance 4 from one of them then the length of a side of the equilateral triangle is

A

8

B

883\sqrt{\frac{88}{3}}

C

473\frac{4\sqrt{7}}{\sqrt{3}}

D

None

Answer

473\frac{4\sqrt{7}}{\sqrt{3}}

Explanation

Solution

DABD cos q = 2a\frac{2}{a} …(1)

DAEC cos (1200 – q) = 4a\frac{4}{a} …(2)

cos 1200 cosq + sin1200 sinq = 4a\frac{4}{a}

12\frac{1}{2} cos q + 32\frac{\sqrt{3}}{2}sinq = 4a\frac{4}{a}

32\frac{\sqrt{3}}{2}sin q = 4a+12×2a\frac{4}{a} + \frac{1}{2} \times \frac{2}{a}̃ 32sinθ=5a\frac{\sqrt{3}}{2}\sin\theta = \frac{5}{a}

34\frac{3}{4} (1 – cos2 q) = 25a2\frac{25}{a^{2}}

34(14a2)=25a2\frac{3}{4}\left( 1 - \frac{4}{a^{2}} \right) = \frac{25}{a^{2}} ̃ 34=25a2+3a2\frac{3}{4} = \frac{25}{a^{2}} + \frac{3}{a^{2}}

a2 = 28×43\frac{28 \times 4}{3} ̃ a = 473\frac{4\sqrt{7}}{\sqrt{3}}