Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

ABCABC is a triangle in a plane with vertices A(2,3,5),B(1,3,2)A(2, 3, 5), B(-1, 3, 2) and C(λ,5,μ)C(\lambda , 5, \mu). If the median through AA is equally inclined to the coordinate axes, then the value of (λ3+μ3+5)(\lambda^3 + \mu^3 + 5) is :

A

1130

B

1348

C

676

D

1077

Answer

1348

Explanation

Solution


D(1+λ2,4,2+μ2)D \equiv\left(\frac{-1+\lambda}{2}, 4, \frac{2+\mu}{2}\right)
direction cosine of AD =\left\\{\frac{-1+\lambda}{2}-2,4-3, \frac{2+\mu}{2}-5\right\\}
\left\\{\frac{-1+\lambda}{2}-2,4-3, \frac{2+\mu}{2}-5\right\\}
AD=λ52i+j+μ82k^\overline{ AD }=\frac{\lambda-5}{2} i + j +\frac{\mu-8}{2} \hat{ k }
(λ52)(λ52)2+12+(μ82)2=1(λ52)2+1+(μ82)2=(μ82)(λ52)2+1+(μ82)2\Rightarrow \frac{\left(\frac{\lambda-5}{2}\right)}{\sqrt{\left(\frac{\lambda-5}{2}\right)^{2}+1^{2}+\left(\frac{\mu-8}{2}\right)^{2}}}=\frac{1}{\sqrt{\left(\frac{\lambda-5}{2}\right)^{2}+1+\left(\frac{\mu-8}{2}\right)^{2}}}=\frac{\left(\frac{\mu-8}{2}\right)}{\sqrt{\left(\frac{\lambda-5}{2}\right)^{2}+1+\left(\frac{\mu-8}{2}\right)^{2}}}
ADi=ADj^=ADk^\overline{ AD } \cdot i =\overline{ AD } \cdot \hat{ j }=\overline{ AD } \cdot \hat{ k }
λ=7,μ=10\lambda=7, \mu=10
λ3+μ3+5=343+1000+5=1348\lambda^{3}+\mu^{3}+5=343+1000+5=1348