Solveeit Logo

Question

Mathematics Question on Straight lines

ABCABC is a triangle GG is the centroid D D is the mid- point of BCBC. If A(2,3)A - (2, 3) and G=(7,5)G = (7, 5), then the point DD is

A

(192,6) \left(\frac {19}{2},6\right)

B

(92,4) \left(\frac {9}{2},4\right)

C

(8,132)\left(8, \frac{13}{2}\right)

D

(112,112) \left(\frac {11}{2},\frac{11}{2}\right)

Answer

(192,6) \left(\frac {19}{2},6\right)

Explanation

Solution

Since, D is the mid point of BC. So, coordinate of
BCBC are (x2+x32,y2+y32)\left(\frac{x_{2} + x_{3} }{2} , \frac{y_{2} +y_{3}}{2}\right)
Given, G(7,5)G (7, 5) is the centroid of ΔABC\Delta \,ABC
7=2+x2+x33\therefore 7 = \frac{2+ x_{2} + x_{3}}{3}
and 5=3+y2+y335 = \frac{3+y_{2} + y_{3}}{3}
x2+x3=212\Rightarrow x_{2} + x_{3} = 21-2
and y2+y3=153y_{2} + y_{3} = 15 -3
x2+x3=19\Rightarrow x_{2} + x_{3} = 19
and y2+y3=12y_{2 } +y_{3} = 12
x2+x32=192\Rightarrow \frac{x_{2} +x_{3}}{2} = \frac{19}{2}
and y2+y32=6\frac{y_{2} + y_{3} }{2} = 6
\therefore Coordinate of D are (192,6)\left( \frac{19}{2} , 6 \right)