Solveeit Logo

Question

Question: \(ABC\) is a triangle. \(D\) divides \(BC\) in the ratio \(l:m\) and \(G\) divides \(AD\) in the rat...

ABCABC is a triangle. DD divides BCBC in the ratio l:ml:m and GG divides ADAD in the ratio (l+m):n\left( {l + m} \right):n. Find the position vector of DD and GG.

Explanation

Solution

Suppose the position vector of BB be b\overrightarrow b and position vector of CC be c\overrightarrow c and then use the formula of ratio d=lc+mbl+m\overrightarrow d = \dfrac{{l\overrightarrow c + m\overrightarrow b }}{{l + m}} where DD divides BCBC in the ratio l:ml:m. Similarly find out the point GG and hence find the position vector of both the points.

Complete step-by-step answer:
According to the question, ABCABC is a triangle and DD divides BCBC in the ratio l:ml:m and GG divides ADAD in the ratio (l+m):n\left( {l + m} \right):n and we need to find the position vector of DD and GG.
So first of all, we assume the position vector of BB be b\overrightarrow b and the position vector of CC be c\overrightarrow c . According to the question, DD divides BCBC in the ratio l:ml:m and hence we know the formula that if position vector of the two given points are given as a\overrightarrow a and b\overrightarrow b and the point PP divides it in the ratio n:mn:m and hence the formula for the position vector of point p=am+bnm+n\overrightarrow p = \dfrac{{\overrightarrow a m + \overrightarrow b n}}{{m + n}} .
So in this question, we have assumed that the position vector of BB and CC as b\overrightarrow b and c\overrightarrow c respectively and BCBC is divided by DD in the ratio l:ml:m. Hence we can get the position vector of DD as:
Position vector of D=lc+mbl+mD = \dfrac{{l\overrightarrow c + m\overrightarrow b }}{{l + m}} .
Now let us assume that the position vector of point AA be and we proved that the position vector of DD be lc+mbl+m\dfrac{{l\overrightarrow c + m\overrightarrow b }}{{l + m}} and GG divides ADAD in the ratio (l+m):n\left( {l + m} \right):n and we know the position vectors of AA and DD. Hence the position vector of G will be:
Position vector of G=na+(l+m)(lc+mb)(l+m)n+l+mG = \dfrac{{n\overrightarrow a + \left( {l + m} \right)\dfrac{{\left( {l\overrightarrow c + m\overrightarrow b } \right)}}{{\left( {l + m} \right)}}}}{{n + l + m}}
=na+mb+ncn+m+l= \dfrac{{n\overrightarrow a + m\overrightarrow b + n\overrightarrow c }}{{n + m + l}}
Hence position vector of D=lc+mbl+mD = \dfrac{{l\overrightarrow c + m\overrightarrow b }}{{l + m}}
And the position vector of GG =na+mb+ncn+m+l = \dfrac{{n\overrightarrow a + m\overrightarrow b + n\overrightarrow c }}{{n + m + l}}.

Note: You should know that if A(x1,y1)A\left( {{x_1},{y_1}} \right) and B(x2,y2)B\left( {{x_2},{y_2}} \right) is divided by the point P(x,y)P\left( {x,y} \right) in the ratio m:nm:n, then P(x,y)P\left( {x,y} \right) is given by:
P(x,y)P\left( {x,y} \right) =P(nx1+mx2n+m,ny1+my2n+m) = P\left( {\dfrac{{n{x_1} + m{x_2}}}{{n + m}},\dfrac{{n{y_1} + m{y_2}}}{{n + m}}} \right)
Similarly if the position vector is given we can use a similar formula, just replacing the point P(x,y)P\left( {x,y} \right) by the position vector namely a\overrightarrow a .