Question
Mathematics Question on Cyclic Quadrilaterals
ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠ CAD = ∠ CBD.
In ∆ABC,
∠ABC + ∠BCA + ∠CAB = 180°
90° + ∠BCA + ∠CAB = 180°
∠BCA + ∠CAB = 90°.....(1)
∠ABC +∠ BCA + ∠CAB = 180° (Angle sum property of a triangle)
In ∆ADC,
∠CDA + ∠ACD + ∠DAC = 180° (Angle sum property of a triangle)
90° + ACD + DAC = 180°
∠ACD + ∠DAC = 90°.....(2)
Adding equations (1) and (2), we obtain
∠BCA + ∠CAB + ∠ACD + ∠DAC = 180°
(∠BCA +∠ACD) + (∠CAB + ∠DAC) = 180°
∠BCD + ∠DAB = 180° ... (3)
However, it is given that
∠B + ∠D = 90° + 90° = 180°.....(4)
From equations (3) and (4), it can be observed that the sum of the measures of opposite angles of quadrilateral ABCD is 180°. Therefore, it is a cyclic quadrilateral.
Consider chord CD.
∠CAD = ∠CBD (Angles in the same segment)