Solveeit Logo

Question

Question: AB is a double ordinate of parabola $y^2 = 8x$ which passes through the focus S. $\triangle ABC$ is ...

AB is a double ordinate of parabola y2=8xy^2 = 8x which passes through the focus S. ABC\triangle ABC is isosceles right angled triangle, where C lies on positive x-axis. Line passing through A and C meets the parabola again at E and line passing through B and C meets the parabola again at D. Then which of the following is/are correct?

A

Length of DEDE is 24 units

B

The inradius of ABC\triangle ABC is 4(21)4(\sqrt{2} - 1) units

C

Area of trapezium ADEBADEB is 256 square units

D

Ratio of inradius of CDE\triangle CDE and ABC\triangle ABC is 3:1

Answer

A, B, C, and D

Explanation

Solution

Solution:

  1. Parabola and Focus: The parabola is given by

    y2=8x.y^2=8x.

    Writing it as y2=4axy^2 = 4ax gives a=2a=2 so the focus is S=(2,0)S=(2,0).

  2. Double Ordinate AB: A double ordinate is a vertical chord. Since this chord passes through the focus, its line is x=2x=2. Let the endpoints be

    A=(2,y1)andB=(2,y2).A=(2, y_1) \quad \text{and} \quad B=(2, y_2).

    They lie on the parabola so

    y12=82=16andy22=16.y_1^2=8\cdot2=16 \quad\text{and}\quad y_2^2=16.

    Take A=(2,4)A=(2,-4) and B=(2,4)B=(2,4).

  3. Triangle ABC: The vertex CC lies on the positive xx-axis so C=(c,0)C=(c,0), c>0c>0. Given that ABC\triangle ABC is an isosceles right triangle, we note:

    CA=CB.CA = CB.

    With

    CA=(c2)2+(0+4)2=(c2)2+16andCB=(c2)2+(04)2=(c2)2+16,CA=\sqrt{(c-2)^2+(0+4)^2}=\sqrt{(c-2)^2+16} \quad\text{and}\quad CB=\sqrt{(c-2)^2+(0-4)^2}=\sqrt{(c-2)^2+16},

    the triangle is isosceles with right angle at CC if

    AB2=CA2+CB2.AB^2=CA^2+CB^2.

    Here, AB=8AB=8 so:

    64=2[(c2)2+16](c2)2+16=32(c2)2=16.64=2[(c-2)^2+16] \quad\Rightarrow\quad (c-2)^2+16=32 \quad\Rightarrow\quad (c-2)^2=16.

    Thus, c2=4c-2=4 (since c>0c>0) so c=6c=6 and C=(6,0)C=(6,0).

  4. Finding E on line AC: The line ACAC through A=(2,4)A=(2,-4) and C=(6,0)C=(6,0) has slope

    m=0(4)62=1.m=\frac{0-(-4)}{6-2}=1.

    Its equation is

    y=x6.y=x-6.

    Substituting y=x6y=x-6 in the parabola:

    (x6)2=8xx212x+368x=0x220x+36=0.(x-6)^2=8x \quad\Rightarrow\quad x^2-12x+36-8x=0 \quad\Rightarrow\quad x^2-20x+36=0.

    The solutions are

    x=20±4001442=20±162.x=\frac{20\pm\sqrt{400-144}}{2}=\frac{20\pm16}{2}.

    Taking x=2x=2 (which gives AA), the other intersection is x=18x=18 so

    y=186=12.y=18-6=12.

    Hence, E=(18,12)E=(18,12).

  5. Finding D on line BC: The line BCBC through B=(2,4)B=(2,4) and C=(6,0)C=(6,0) has slope

    m=0462=1.m=\frac{0-4}{6-2}=-1.

    Its equation is

    y=x+6.y=-x+6.

    Substituting into the parabola:

    (x+6)2=8xx212x+368x=0x220x+36=0.(-x+6)^2=8x \quad\Rightarrow\quad x^2-12x+36-8x=0 \quad\Rightarrow\quad x^2-20x+36=0.

    Taking the solution x=2x=2 gives BB, the other solution is x=18x=18 so

    y=18+6=12.y=-18+6=-12.

    Hence, D=(18,12)D=(18,-12).

  6. Option A (Length of DE): D=(18,12)D=(18,-12) and E=(18,12)E=(18,12) lie vertically apart. Thus,

    DE=12(12)=24 units.DE=|12 - (-12)|=24 \text{ units.}
  7. Option B (Inradius of ABC\triangle ABC): ABC\triangle ABC is right-angled at CC with legs CA=CBCA=CB. From point AA to CC:

    CA=(62)2+(0(4))2=42+42=42.CA=\sqrt{(6-2)^2+(0-(-4))^2}=\sqrt{4^2+4^2}=4\sqrt2.

    In a right triangle the inradius is

    r=a+bc2.r=\frac{a+b-c}{2}.

    Here, a=b=42a=b=4\sqrt2 and the hypotenuse AB=8AB=8. So:

    rABC=42+4282=4(21).r_{ABC}=\frac{4\sqrt2+4\sqrt2-8}{2}=4(\sqrt2-1).
  8. Option C (Area of Trapezium ADEBADEB): The trapezium ADEBADEB has vertices A=(2,4)A=(2,-4), D=(18,12)D=(18,-12), E=(18,12)E=(18,12), B=(2,4)B=(2,4). Notice that sides ADAD and BEBE are non‐parallel but the vertical sides ABAB (from AA to BB) and DEDE (from DD to EE) are parallel (both vertical).

    • Length of ABAB: 88 units.
    • Length of DEDE: 2424 units.
    • Horizontal distance between x=2x=2 and x=18x=18: 1616 units.

    So the area is

    Area=12(8+24)×16=12(32×16)=256 square units.\text{Area}=\frac{1}{2}(8+24)\times 16=\frac{1}{2}(32\times16)=256\text{ square units.}
  9. Option D (Ratio of inradii of CDE\triangle CDE and ABC\triangle ABC): In CDE\triangle CDE with vertices C=(6,0)C=(6,0), D=(18,12)D=(18,-12), and E=(18,12)E=(18,12):

    • CD=(186)2+(120)2=144+144=122.CD=\sqrt{(18-6)^2+(-12-0)^2}=\sqrt{144+144}=12\sqrt2.
    • CE=(186)2+(120)2=122.CE=\sqrt{(18-6)^2+(12-0)^2}=12\sqrt2.
    • DE=24.DE=24.

    This is an isosceles right triangle (legs 12212\sqrt2 and hypotenuse 2424). Its inradius is:

    rCDE=122+122242=242242=12(21).r_{CDE}=\frac{12\sqrt2+12\sqrt2-24}{2}=\frac{24\sqrt2-24}{2}=12(\sqrt2-1).

    We have rABC=4(21)r_{ABC}=4(\sqrt2-1). Therefore, the ratio is:

    rCDErABC=12(21)4(21)=3.\frac{r_{CDE}}{r_{ABC}}=\frac{12(\sqrt2-1)}{4(\sqrt2-1)}=3.

    So, the ratio is 3:13:1.

Final Answers:

  • A. True
  • B. True
  • C. True
  • D. True

Core Explanation: The double ordinate through the focus for y2=8xy^2=8x gives x=2x=2 and points A=(2,4)A=(2,-4) and B=(2,4)B=(2,4). For ABC\triangle ABC (right angle at CC on the positive xx-axis) using CA=CBCA=CB, we find C=(6,0)C=(6,0). The lines ACAC and BCBC meet the parabola again at E=(18,12)E=(18,12) and D=(18,12)D=(18,-12) respectively. Using distance and inradius formulas for right triangles and the trapezium area formula, each option is verified.