Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

ABAB and CDCD are 22 line segments ; where A(2,3,0),B(6,9,0),C(6,9,0).PA(2,3,0),B (6, 9, 0), C(-6, -9, 0). P and QQ are midpoint of ABAB and CDCD, respectively and LL is the midpoint of PQPQ. Find the distance of LL from the plane 3x+4z+25=03x + 4z + 25 = 0

A

25

B

15

C

5

D

40

Answer

5

Explanation

Solution

Let co-ordinate of DD is (x,y,z)(x, y, z)
Using mid-point formula
Q=(x62,y92,z+02)Q=\left(\frac{x-6}{2}, \frac{y-9}{2} , \frac{z+0}{2}\right)
Also, P=(2+62,3+92,0+02)=(4,6,0)P=\left(\frac{2+6}{2}, \frac{3+9}{2}, \frac{0+0}{2}\right) =\left(4,6,0\right)
Since, ACPQAC||PQ
\therefore D.r's of line ACAC = D.r's of line PQPQ
(8,12,0)=(x142,y212,z2)\Rightarrow \:\: \left(-8 ,12,0\right)=\left(\frac{x-14}{2}, \frac{y-21}{2} , \frac{z}{2}\right)
x=2,y=3,z=0\Rightarrow\:\: x = -2, y = -3, z = 0
D(2,3,0)Q(4,6,0)\Rightarrow\:\:\: D (-2, -3,0) \:\:\: \Rightarrow \:\: Q(-4, - 6,0)
If LL is midpoint of PQPQ then
L(442,662,0)=(0,0,0)L\left(\frac{4-4}{2}, \frac{6-6}{2}, 0\right)=\left(0,0,0\right)
\therefore \perp distance of L(0,0,0)L(0,0,0) from the plane 3x+4z+25=03x + 4z + 25 = 0 is
=3(0)+4(0)+25(3)2+(4)2=2525=25=5=\left|\frac{3\left(0\right)+4\left(0\right)+25}{\sqrt{\left(3\right)^{2}+\left(4\right)^{2}}}\right|= \left|\frac{25}{\sqrt{25}}\right| =\sqrt{25} =5