Solveeit Logo

Question

Question: aA + bB\(\longrightarrow\) Product, dx/dt = k [A]a [B]b . If concentration of A is doubled, rate is...

aA + bB\longrightarrow Product, dx/dt = k [A]a [B]b . If

concentration of A is doubled, rate is four times. If concentration of B is made four times, rate is doubled. What is relation between rate of disappearance of A and that of B ?

A

{[A] / dt} = - {[B] / dt}\text{- }\{\text{d }\lbrack A\rbrack\text{ / dt}\}\text{ = - }\{\text{d }\lbrack B\rbrack\text{ / dt}\}

B

{[A] / dt} = - {4 d [B] / dt}\text{- }\{\text{d }\lbrack A\rbrack\text{ / dt}\}\text{ = - }\{\text{4 d }\lbrack B\rbrack\text{ / dt}\}

C

{4 d [A] / dt} = - {[B]/ dt}\text{- }\{\text{4 d }\lbrack A\rbrack\text{ / dt}\}\text{ = - }\{\text{d }\lbrack B\rbrack\text{/ dt}\}

D

None of these

Answer

{[A] / dt} = - {4 d [B] / dt}\text{- }\{\text{d }\lbrack A\rbrack\text{ / dt}\}\text{ = - }\{\text{4 d }\lbrack B\rbrack\text{ / dt}\}

Explanation

Solution

dxdt=k[A]a[B]b\frac{dx}{dt} = k\lbrack A\rbrack^{a}\lbrack B\rbrack^{b}

(i) As on doubling concentration of A rate become four time so a = 2.

(ii) On four time concentration of B rate become double so b = 12\frac{1}{2} .

So, Given equation :2a+12bPr2a + \frac{1}{2}b\overset{\quad\quad}{\rightarrow}\Pr 莀

12d[A]dt=2d[B]dt- \frac{1}{2}\frac{d\lbrack A\rbrack}{dt} = - 2\frac{d\lbrack B\rbrack}{dt}

d[A]dt=4d[B]dt- \frac{d\lbrack A\rbrack}{dt} = - 4\frac{d\lbrack B\rbrack}{dt}