Question
Question: $a_0 = 0$ $a_{n+1} = \frac{8}{5}a_n + \frac{6}{5}\sqrt{4^n - a_n^2}$ $[a_{10}] = ?$ ...
a0=0
an+1=58an+564n−an2
[a10]=?

983
Solution
Let an=2nsin(θn). Substituting this into the recurrence relation, we get: 2n+1sin(θn+1)=58(2nsin(θn))+564n−(2nsin(θn))2 2n+1sin(θn+1)=582nsin(θn)+562n∣cos(θn)∣ Dividing by 2n+1: sin(θn+1)=54sin(θn)+53∣cos(θn)∣
Let α be an angle such that cos(α)=54 and sin(α)=53. The relation becomes: sin(θn+1)=cos(α)sin(θn)+sin(α)∣cos(θn)∣
With a0=0, we have θ0=0. The sequence of angles θn and their cosines are: θ0=0, cos(θ0)=1>0. sin(θ1)=sin(0+α)=sin(α)⟹θ1=α. cos(θ1)=4/5>0. sin(θ2)=sin(α+α)=sin(2α)⟹θ2=2α. cos(θ2)=cos(2α)=7/25>0. sin(θ3)=sin(2α+α)=sin(3α). cos(3α)=−44/125<0. To ensure the cosine term is positive for the next step if needed, we choose θ3=π−3α. cos(θ3)=cos(π−3α)=44/125>0. sin(θ4)=sin(θ3+α)=sin(π−3α+α)=sin(π−2α)=sin(2α). cos(θ4)=cos(π−2α)=−7/25<0. sin(θ5)=sin(θ4−α)=sin(π−2α−α)=sin(π−3α)=sin(3α). cos(θ5)=cos(π−3α)=44/125>0.
The pattern for n≥3 is: If n is odd, θn=π−3α. If n is even, θn=π−2α.
We need a10=210sin(θ10). Since 10 is even and 10≥4, θ10=π−2α. a10=210sin(π−2α)=210sin(2α). sin(2α)=2sin(α)cos(α)=2(3/5)(4/5)=24/25. a10=1024×2524=2524576=983.04. The integer part is [a10]=[983.04]=983.
