Solveeit Logo

Question

Question: $a_0 = 0$ $a_{n+1} = \frac{8}{5}a_n + \frac{6}{5}\sqrt{4^n - a_n^2}$ $[a_{10}] = ?$ ...

a0=0a_0 = 0

an+1=85an+654nan2a_{n+1} = \frac{8}{5}a_n + \frac{6}{5}\sqrt{4^n - a_n^2}

[a10]=?[a_{10}] = ?

Answer

983

Explanation

Solution

Let an=2nsin(θn)a_n = 2^n \sin(\theta_n). Substituting this into the recurrence relation, we get: 2n+1sin(θn+1)=85(2nsin(θn))+654n(2nsin(θn))22^{n+1} \sin(\theta_{n+1}) = \frac{8}{5} (2^n \sin(\theta_n)) + \frac{6}{5} \sqrt{4^n - (2^n \sin(\theta_n))^2} 2n+1sin(θn+1)=852nsin(θn)+652ncos(θn)2^{n+1} \sin(\theta_{n+1}) = \frac{8}{5} 2^n \sin(\theta_n) + \frac{6}{5} 2^n |\cos(\theta_n)| Dividing by 2n+12^{n+1}: sin(θn+1)=45sin(θn)+35cos(θn)\sin(\theta_{n+1}) = \frac{4}{5} \sin(\theta_n) + \frac{3}{5} |\cos(\theta_n)|

Let α\alpha be an angle such that cos(α)=45\cos(\alpha) = \frac{4}{5} and sin(α)=35\sin(\alpha) = \frac{3}{5}. The relation becomes: sin(θn+1)=cos(α)sin(θn)+sin(α)cos(θn)\sin(\theta_{n+1}) = \cos(\alpha) \sin(\theta_n) + \sin(\alpha) |\cos(\theta_n)|

With a0=0a_0 = 0, we have θ0=0\theta_0 = 0. The sequence of angles θn\theta_n and their cosines are: θ0=0\theta_0 = 0, cos(θ0)=1>0\cos(\theta_0) = 1 > 0. sin(θ1)=sin(0+α)=sin(α)    θ1=α\sin(\theta_1) = \sin(0+\alpha) = \sin(\alpha) \implies \theta_1 = \alpha. cos(θ1)=4/5>0\cos(\theta_1) = 4/5 > 0. sin(θ2)=sin(α+α)=sin(2α)    θ2=2α\sin(\theta_2) = \sin(\alpha+\alpha) = \sin(2\alpha) \implies \theta_2 = 2\alpha. cos(θ2)=cos(2α)=7/25>0\cos(\theta_2) = \cos(2\alpha) = 7/25 > 0. sin(θ3)=sin(2α+α)=sin(3α)\sin(\theta_3) = \sin(2\alpha+\alpha) = \sin(3\alpha). cos(3α)=44/125<0\cos(3\alpha) = -44/125 < 0. To ensure the cosine term is positive for the next step if needed, we choose θ3=π3α\theta_3 = \pi - 3\alpha. cos(θ3)=cos(π3α)=44/125>0\cos(\theta_3) = \cos(\pi - 3\alpha) = 44/125 > 0. sin(θ4)=sin(θ3+α)=sin(π3α+α)=sin(π2α)=sin(2α)\sin(\theta_4) = \sin(\theta_3+\alpha) = \sin(\pi - 3\alpha + \alpha) = \sin(\pi - 2\alpha) = \sin(2\alpha). cos(θ4)=cos(π2α)=7/25<0\cos(\theta_4) = \cos(\pi - 2\alpha) = -7/25 < 0. sin(θ5)=sin(θ4α)=sin(π2αα)=sin(π3α)=sin(3α)\sin(\theta_5) = \sin(\theta_4-\alpha) = \sin(\pi - 2\alpha - \alpha) = \sin(\pi - 3\alpha) = \sin(3\alpha). cos(θ5)=cos(π3α)=44/125>0\cos(\theta_5) = \cos(\pi - 3\alpha) = 44/125 > 0.

The pattern for n3n \ge 3 is: If nn is odd, θn=π3α\theta_n = \pi - 3\alpha. If nn is even, θn=π2α\theta_n = \pi - 2\alpha.

We need a10=210sin(θ10)a_{10} = 2^{10} \sin(\theta_{10}). Since 10 is even and 10410 \ge 4, θ10=π2α\theta_{10} = \pi - 2\alpha. a10=210sin(π2α)=210sin(2α)a_{10} = 2^{10} \sin(\pi - 2\alpha) = 2^{10} \sin(2\alpha). sin(2α)=2sin(α)cos(α)=2(3/5)(4/5)=24/25\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha) = 2(3/5)(4/5) = 24/25. a10=1024×2425=2457625=983.04a_{10} = 1024 \times \frac{24}{25} = \frac{24576}{25} = 983.04. The integer part is [a10]=[983.04]=983[a_{10}] = [983.04] = 983.