Question
Question: a=1/sin60°sin61°+1/sin62°sin63°+......1/sin118°sin119°. The value of (cosec1°/a)²...
a=1/sin60°sin61°+1/sin62°sin63°+......1/sin118°sin119°. The value of (cosec1°/a)²
3
Solution
The given sum is a=sin60∘sin61∘1+sin62∘sin63∘1+⋯+sin118∘sin119∘1.
Each term in the sum is of the form sinx∘siny∘1. We can use the identity: sinxsinysin(y−x)=cotx−coty. In our case, the difference between the angles in the denominator is 1∘ (e.g., 61∘−60∘=1∘). So, we can write sinx∘sin(x+1)∘1=sin1∘1sinx∘sin(x+1)∘sin((x+1)−x)=sin1∘1(cotx∘−cot(x+1)∘).
Let's apply this identity to each term in the sum for a: The general term is Tk=sin(60+2(k−1))∘sin(60+2(k−1)+1)∘1, where k is the term number. Tk=sin1∘1(cot(60+2(k−1))∘−cot(60+2(k−1)+1)∘).
To find the number of terms, observe the starting angles: 60∘,62∘,…,118∘. This is an arithmetic progression. Let the starting angle be Ak=60+2(k−1). For the last term, Ak=118∘. 118=60+2(k−1) 58=2(k−1) 29=k−1 k=30. There are 30 terms in the sum.
Now let's write out the sum for a: a=sin1∘1[(cot60∘−cot61∘)+(cot62∘−cot63∘)+⋯+(cot118∘−cot119∘)].
We can pair terms from the beginning and the end of the sum. Let's consider the k-th term from the beginning, Tk, and the k-th term from the end, which is T30−(k−1)=T31−k.
Tk=sin1∘1(cot(60+2k−2)∘−cot(60+2k−1)∘). T31−k is the term corresponding to the starting angle 60+2((31−k)−1)∘=60+2(30−k)∘=(120−2k)∘. So, T31−k=sin1∘1(cot(120−2k)∘−cot(121−2k)∘).
We use the identity cot(180∘−θ)=−cotθ. cot(120−2k)∘=cot(180−(60+2k))∘=−cot(60+2k)∘. cot(121−2k)∘=cot(180−(59+2k))∘=−cot(59+2k)∘. Substituting these into T31−k: T31−k=sin1∘1(−cot(60+2k)∘−(−cot(59+2k)∘))=sin1∘1(cot(59+2k)∘−cot(60+2k)∘).
Now, let's sum Tk+T31−k: Tk+T31−k=sin1∘1[(cot(60+2k−2)∘−cot(60+2k−1)∘)+(cot(59+2k)∘−cot(60+2k)∘)]. Let's re-index k for clarity. Let the first angle in Tk be xk=60+2(k−1). Then Tk=sin1∘1(cotxk∘−cot(xk+1)∘). The corresponding term from the end is T31−k. Its angles are 180∘−(xk+1)∘ and 180∘−xk∘. Specifically, if xk=60+2(k−1), the last term's angles are 118,119. 118=180−62. 119=180−61. So, T30=sin1∘1(cot118∘−cot119∘)=sin1∘1(−cot62∘−(−cot61∘))=sin1∘1(cot61∘−cot62∘).
Let's sum Tk with T31−k for k=1,…,15. k=1: T1+T30=sin1∘1[(cot60∘−cot61∘)+(cot61∘−cot62∘)]=sin1∘1(cot60∘−cot62∘). k=2: T2+T29=sin1∘1[(cot62∘−cot63∘)+(cot63∘−cot64∘)]=sin1∘1(cot62∘−cot64∘). This pattern continues. The sum a is the sum of these 15 pairs: a=∑k=115(Tk+T31−k) a=sin1∘1[(cot60∘−cot62∘)+(cot62∘−cot64∘)+⋯+(cot(60+2(15−1))∘−cot(60+2(15−1)+2)∘)]. The last pair is for k=15. T15+T16=sin1∘1[(cot(60+28)∘−cot(60+29)∘)+(cot(60+30)∘−cot(60+31)∘)]. T15=sin1∘1(cot88∘−cot89∘). T16=sin1∘1(cot90∘−cot91∘). Using cot(180−θ)=−cotθ: T16=sin1∘1(cot90∘−(−cot89∘))=sin1∘1(0+cot89∘)=sin1∘1cot89∘. (Since cot90∘=0) So, T15+T16=sin1∘1[(cot88∘−cot89∘)+cot89∘]=sin1∘1cot88∘.
Let's re-examine the sum of pairs. The sum is a telescoping series: a=sin1∘1[(cot60∘−cot62∘)+(cot62∘−cot64∘)+⋯+(cot88∘−cot90∘)+(cot90∘−cot92∘)+⋯+(cot116∘−cot118∘)]. This is not the sum of pairs as I wrote it. The sum of pairs is: a=∑k=115sin1∘1(cot(60+2(k−1))∘−cot(60+2(k−1)+2)∘). Let Xk=60+2(k−1). Then the sum for each pair is sin1∘1(cotXk∘−cot(Xk+2)∘). The sum a is: a=sin1∘1[(cot60∘−cot62∘)+(cot62∘−cot64∘)+⋯+(cot(60+2(15−1))∘−cot(60+2(15−1)+2)∘)] a=sin1∘1[(cot60∘−cot62∘)+(cot62∘−cot64∘)+⋯+(cot88∘−cot90∘)]. This is a telescoping sum. The intermediate terms cancel out. a=sin1∘1(cot60∘−cot90∘). Since cot90∘=0: a=sin1∘1(cot60∘−0). a=sin1∘cot60∘. We know cot60∘=31. So, a=3sin1∘1.
We need to find the value of (cosec1∘/a)2. cosec1∘=sin1∘1. Substitute the value of a: acosec1∘=1/(3sin1∘)1/sin1∘=sin1∘1⋅3sin1∘=3.
Finally, we need to calculate (cosec1∘/a)2: (cosec1∘/a)2=(3)2=3.
The final answer is 3.