Solveeit Logo

Question

Question: a=1/sin60°sin61°+1/sin62°sin63°+......1/sin118°sin119°. The value of (cosec1°/a)²...

a=1/sin60°sin61°+1/sin62°sin63°+......1/sin118°sin119°. The value of (cosec1°/a)²

Answer

3

Explanation

Solution

The given sum is a=1sin60sin61+1sin62sin63++1sin118sin119a = \frac{1}{\sin60^\circ\sin61^\circ} + \frac{1}{\sin62^\circ\sin63^\circ} + \dots + \frac{1}{\sin118^\circ\sin119^\circ}.

Each term in the sum is of the form 1sinxsiny\frac{1}{\sin x^\circ \sin y^\circ}. We can use the identity: sin(yx)sinxsiny=cotxcoty\frac{\sin(y-x)}{\sin x \sin y} = \cot x - \cot y. In our case, the difference between the angles in the denominator is 11^\circ (e.g., 6160=161^\circ - 60^\circ = 1^\circ). So, we can write 1sinxsin(x+1)=1sin1sin((x+1)x)sinxsin(x+1)=1sin1(cotxcot(x+1))\frac{1}{\sin x^\circ \sin (x+1)^\circ} = \frac{1}{\sin 1^\circ} \frac{\sin((x+1)-x)}{\sin x^\circ \sin (x+1)^\circ} = \frac{1}{\sin 1^\circ} (\cot x^\circ - \cot (x+1)^\circ).

Let's apply this identity to each term in the sum for aa: The general term is Tk=1sin(60+2(k1))sin(60+2(k1)+1)T_k = \frac{1}{\sin (60+2(k-1))^\circ \sin (60+2(k-1)+1)^\circ}, where kk is the term number. Tk=1sin1(cot(60+2(k1))cot(60+2(k1)+1))T_k = \frac{1}{\sin 1^\circ} (\cot (60+2(k-1))^\circ - \cot (60+2(k-1)+1)^\circ).

To find the number of terms, observe the starting angles: 60,62,,11860^\circ, 62^\circ, \dots, 118^\circ. This is an arithmetic progression. Let the starting angle be Ak=60+2(k1)A_k = 60+2(k-1). For the last term, Ak=118A_k = 118^\circ. 118=60+2(k1)118 = 60 + 2(k-1) 58=2(k1)58 = 2(k-1) 29=k129 = k-1 k=30k = 30. There are 30 terms in the sum.

Now let's write out the sum for aa: a=1sin1[(cot60cot61)+(cot62cot63)++(cot118cot119)]a = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 61^\circ) + (\cot 62^\circ - \cot 63^\circ) + \dots + (\cot 118^\circ - \cot 119^\circ)].

We can pair terms from the beginning and the end of the sum. Let's consider the kk-th term from the beginning, TkT_k, and the kk-th term from the end, which is T30(k1)=T31kT_{30-(k-1)} = T_{31-k}.

Tk=1sin1(cot(60+2k2)cot(60+2k1))T_k = \frac{1}{\sin 1^\circ} (\cot (60+2k-2)^\circ - \cot (60+2k-1)^\circ). T31kT_{31-k} is the term corresponding to the starting angle 60+2((31k)1)=60+2(30k)=(1202k)60+2((31-k)-1)^\circ = 60+2(30-k)^\circ = (120-2k)^\circ. So, T31k=1sin1(cot(1202k)cot(1212k))T_{31-k} = \frac{1}{\sin 1^\circ} (\cot (120-2k)^\circ - \cot (121-2k)^\circ).

We use the identity cot(180θ)=cotθ\cot(180^\circ - \theta) = -\cot\theta. cot(1202k)=cot(180(60+2k))=cot(60+2k)\cot(120-2k)^\circ = \cot(180-(60+2k))^\circ = -\cot(60+2k)^\circ. cot(1212k)=cot(180(59+2k))=cot(59+2k)\cot(121-2k)^\circ = \cot(180-(59+2k))^\circ = -\cot(59+2k)^\circ. Substituting these into T31kT_{31-k}: T31k=1sin1(cot(60+2k)(cot(59+2k)))=1sin1(cot(59+2k)cot(60+2k))T_{31-k} = \frac{1}{\sin 1^\circ} (-\cot(60+2k)^\circ - (-\cot(59+2k)^\circ)) = \frac{1}{\sin 1^\circ} (\cot(59+2k)^\circ - \cot(60+2k)^\circ).

Now, let's sum Tk+T31kT_k + T_{31-k}: Tk+T31k=1sin1[(cot(60+2k2)cot(60+2k1))+(cot(59+2k)cot(60+2k))]T_k + T_{31-k} = \frac{1}{\sin 1^\circ} [(\cot (60+2k-2)^\circ - \cot (60+2k-1)^\circ) + (\cot (59+2k)^\circ - \cot (60+2k)^\circ)]. Let's re-index kk for clarity. Let the first angle in TkT_k be xk=60+2(k1)x_k = 60+2(k-1). Then Tk=1sin1(cotxkcot(xk+1))T_k = \frac{1}{\sin 1^\circ} (\cot x_k^\circ - \cot (x_k+1)^\circ). The corresponding term from the end is T31kT_{31-k}. Its angles are 180(xk+1)180^\circ - (x_k+1)^\circ and 180xk180^\circ - x_k^\circ. Specifically, if xk=60+2(k1)x_k = 60+2(k-1), the last term's angles are 118,119118, 119. 118=18062118 = 180 - 62. 119=18061119 = 180 - 61. So, T30=1sin1(cot118cot119)=1sin1(cot62(cot61))=1sin1(cot61cot62)T_{30} = \frac{1}{\sin 1^\circ} (\cot 118^\circ - \cot 119^\circ) = \frac{1}{\sin 1^\circ} (-\cot 62^\circ - (-\cot 61^\circ)) = \frac{1}{\sin 1^\circ} (\cot 61^\circ - \cot 62^\circ).

Let's sum TkT_k with T31kT_{31-k} for k=1,,15k=1, \dots, 15. k=1k=1: T1+T30=1sin1[(cot60cot61)+(cot61cot62)]=1sin1(cot60cot62)T_1 + T_{30} = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 61^\circ) + (\cot 61^\circ - \cot 62^\circ)] = \frac{1}{\sin 1^\circ} (\cot 60^\circ - \cot 62^\circ). k=2k=2: T2+T29=1sin1[(cot62cot63)+(cot63cot64)]=1sin1(cot62cot64)T_2 + T_{29} = \frac{1}{\sin 1^\circ} [(\cot 62^\circ - \cot 63^\circ) + (\cot 63^\circ - \cot 64^\circ)] = \frac{1}{\sin 1^\circ} (\cot 62^\circ - \cot 64^\circ). This pattern continues. The sum aa is the sum of these 15 pairs: a=k=115(Tk+T31k)a = \sum_{k=1}^{15} (T_k + T_{31-k}) a=1sin1[(cot60cot62)+(cot62cot64)++(cot(60+2(151))cot(60+2(151)+2))]a = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 62^\circ) + (\cot 62^\circ - \cot 64^\circ) + \dots + (\cot (60+2(15-1))^\circ - \cot (60+2(15-1)+2)^\circ)]. The last pair is for k=15k=15. T15+T16=1sin1[(cot(60+28)cot(60+29))+(cot(60+30)cot(60+31))]T_{15} + T_{16} = \frac{1}{\sin 1^\circ} [(\cot (60+28)^\circ - \cot (60+29)^\circ) + (\cot (60+30)^\circ - \cot (60+31)^\circ)]. T15=1sin1(cot88cot89)T_{15} = \frac{1}{\sin 1^\circ} (\cot 88^\circ - \cot 89^\circ). T16=1sin1(cot90cot91)T_{16} = \frac{1}{\sin 1^\circ} (\cot 90^\circ - \cot 91^\circ). Using cot(180θ)=cotθ\cot(180-\theta) = -\cot\theta: T16=1sin1(cot90(cot89))=1sin1(0+cot89)=1sin1cot89T_{16} = \frac{1}{\sin 1^\circ} (\cot 90^\circ - (-\cot 89^\circ)) = \frac{1}{\sin 1^\circ} (0 + \cot 89^\circ) = \frac{1}{\sin 1^\circ} \cot 89^\circ. (Since cot90=0\cot 90^\circ = 0) So, T15+T16=1sin1[(cot88cot89)+cot89]=1sin1cot88T_{15} + T_{16} = \frac{1}{\sin 1^\circ} [(\cot 88^\circ - \cot 89^\circ) + \cot 89^\circ] = \frac{1}{\sin 1^\circ} \cot 88^\circ.

Let's re-examine the sum of pairs. The sum is a telescoping series: a=1sin1[(cot60cot62)+(cot62cot64)++(cot88cot90)+(cot90cot92)++(cot116cot118)]a = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 62^\circ) + (\cot 62^\circ - \cot 64^\circ) + \dots + (\cot 88^\circ - \cot 90^\circ) + (\cot 90^\circ - \cot 92^\circ) + \dots + (\cot 116^\circ - \cot 118^\circ)]. This is not the sum of pairs as I wrote it. The sum of pairs is: a=k=1151sin1(cot(60+2(k1))cot(60+2(k1)+2))a = \sum_{k=1}^{15} \frac{1}{\sin 1^\circ} (\cot (60+2(k-1))^\circ - \cot (60+2(k-1)+2)^\circ). Let Xk=60+2(k1)X_k = 60+2(k-1). Then the sum for each pair is 1sin1(cotXkcot(Xk+2))\frac{1}{\sin 1^\circ} (\cot X_k^\circ - \cot (X_k+2)^\circ). The sum aa is: a=1sin1[(cot60cot62)+(cot62cot64)++(cot(60+2(151))cot(60+2(151)+2))]a = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 62^\circ) + (\cot 62^\circ - \cot 64^\circ) + \dots + (\cot (60+2(15-1))^\circ - \cot (60+2(15-1)+2)^\circ)] a=1sin1[(cot60cot62)+(cot62cot64)++(cot88cot90)]a = \frac{1}{\sin 1^\circ} [(\cot 60^\circ - \cot 62^\circ) + (\cot 62^\circ - \cot 64^\circ) + \dots + (\cot 88^\circ - \cot 90^\circ)]. This is a telescoping sum. The intermediate terms cancel out. a=1sin1(cot60cot90)a = \frac{1}{\sin 1^\circ} (\cot 60^\circ - \cot 90^\circ). Since cot90=0\cot 90^\circ = 0: a=1sin1(cot600)a = \frac{1}{\sin 1^\circ} (\cot 60^\circ - 0). a=cot60sin1a = \frac{\cot 60^\circ}{\sin 1^\circ}. We know cot60=13\cot 60^\circ = \frac{1}{\sqrt{3}}. So, a=13sin1a = \frac{1}{\sqrt{3}\sin 1^\circ}.

We need to find the value of (cosec1/a)2(\text{cosec}1^\circ/a)^2. cosec1=1sin1\text{cosec}1^\circ = \frac{1}{\sin 1^\circ}. Substitute the value of aa: cosec1a=1/sin11/(3sin1)=1sin13sin1=3\frac{\text{cosec}1^\circ}{a} = \frac{1/\sin 1^\circ}{1/(\sqrt{3}\sin 1^\circ)} = \frac{1}{\sin 1^\circ} \cdot \sqrt{3}\sin 1^\circ = \sqrt{3}.

Finally, we need to calculate (cosec1/a)2(\text{cosec}1^\circ/a)^2: (cosec1/a)2=(3)2=3(\text{cosec}1^\circ/a)^2 = (\sqrt{3})^2 = 3.

The final answer is 3\boxed{3}.