Question
Question: A(1, -1, -3), B(2, 1, -2) & C(-5, 2, -6) are the position vectors of the vertices of a triangle ABC,...
A(1, -1, -3), B(2, 1, -2) & C(-5, 2, -6) are the position vectors of the vertices of a triangle ABC, length of the bisector of its internal angle at A is :

10/4
310/4
10
none
310/4
Solution
The problem asks for the length of the internal angle bisector at vertex A of triangle ABC, given the position vectors of its vertices.
Let the position vectors of A, B, and C be a, b, and c respectively.
Given: a=(1,−1,−3) b=(2,1,−2) c=(−5,2,−6)
Let AD be the angle bisector of angle A, where D is a point on side BC. According to the Angle Bisector Theorem, the point D divides the side BC in the ratio of the lengths of the adjacent sides AB and AC. So, BD : DC = AB : AC.
First, calculate the lengths of the sides AB and AC:
Length of side AB: AB=b−a=(2−1)i^+(1−(−1))j^+(−2−(−3))k^=i^+2j^+k^ ∣AB∣=12+22+12=1+4+1=6
Length of side AC: AC=c−a=(−5−1)i^+(2−(−1))j^+(−6−(−3))k^=−6i^+3j^−3k^ ∣AC∣=(−6)2+32+(−3)2=36+9+9=54=9×6=36
Now, find the ratio BD : DC: BD : DC = AB : AC = 6:36=1:3.
Next, find the position vector of point D using the section formula. D divides BC in the ratio 1:3. d=1+33b+1c=43b+c
Substitute the position vectors of B and C: 3b=3(2i^+j^−2k^)=6i^+3j^−6k^ c=−5i^+2j^−6k^ d=4(6i^+3j^−6k^)+(−5i^+2j^−6k^)=4(6−5)i^+(3+2)j^+(−6−6)k^ d=4i^+5j^−12k^=41i^+45j^−3k^
Finally, calculate the length of the angle bisector AD: AD=d−a=(41i^+45j^−3k^)−(i^−j^−3k^) AD=(41−1)i^+(45−(−1))j^+(−3−(−3))k^ AD=(41−4)i^+(45+4)j^+(−3+3)k^ AD=−43i^+49j^+0k^
Length of AD: ∣AD∣=(−43)2+(49)2+02 ∣AD∣=169+1681 ∣AD∣=1690 ∣AD∣=1690=49×10=4310
The final answer is 310/4.