Solveeit Logo

Question

Physics Question on Oscillations

A wooden cube (density of wood d'd') of side '\ell' floats in a liquid of density ρ'\rho' with its upper and lower surfaces horizontal. If the cube is pushed slightly down and released, it performs simple harmonic motion of period T'T'. Then, T'T' is equal to :

A

2πdρg2\pi\sqrt{\frac{\ell d}{\rho g}}

B

2πρdg2\pi\sqrt{\frac{\ell\rho}{dg}}

C

2πd(ρd)g2\pi\sqrt{\frac{\ell d}{\left(\rho-d\right)g}}

D

2πρ(ρd)g2\pi\sqrt{\frac{\ell\rho}{\left(\rho-d\right)g}}

Answer

2πdρg2\pi\sqrt{\frac{\ell d}{\rho g}}

Explanation

Solution

At equilibrium Fb=mgF_{b} = mg ρA0g=dAg...........(i)\rho A\ell_{0}g = dA\ell g \quad...........\left(i\right) Restoring force, F=mgFbF = mg - F_{b}' F=mgρA(0+x)gF = mg - \rho A\left(\ell_{0} + x\right)g dAa=dAgρA0gρgAxdA\ell a = dA\ell g - \rho A\ell_{0}g - \rho gAx a=ρgdxa = \frac{\rho g}{d\ell}x ω=ρgd\omega = \sqrt{\frac{\rho g}{d\ell}} T=2πdρg...........(i)T = 2\pi\sqrt{\frac{\ell d}{\rho g}}\quad...........\left(i\right)