Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

A wooden box lying at rest on an inclined surface of a wet wood is held at static equilibrium by a constant force FF applied perpendicular to the incline. If the mass of the box is 1kg1\,kg, the angle of inclination is 3030^{\circ} and the coefficient of static friction between the box and the inclined plane is 0.20.2, the minimum magnitude of F\vec{F} is (Use g=10m/s2 g = 10\,m/s^2)

A

0N0 \, N, as 3030^{\circ} is less than angle of repose

B

1N\geq \, 1 N

C

3.3N\geq \, 3.3 N

D

16.3N\geq \, 16.3 N

Answer

16.3N\geq \, 16.3 N

Explanation

Solution

According to question, we can draw the following diagram

mgsinθ=μ(F+mgcosθ)m g \sin \theta =\mu(F+m g \cos \theta)
F=mgsinθμmgcosθF =\frac{m g \sin \theta}{\mu}-m g \cos \theta
=mg[sinθμcosθ]=m g\left[\frac{\sin \theta}{\mu}-\cos \theta\right]
Here, m=1kg,g=10m/s2,θ=30,μ=0.2m =1 \,kg , g=10 m / s ^{2}, \theta=30^{\circ}, \mu=0.2
F=1×10[sin3002cos30]F \left.=1 \times 10 \frac{[\sin 30}{02}-\cos 30^{\circ}\right]
=10[12×0.232]=10\left[\frac{1}{2 \times 0.2}-\frac{\sqrt{3}}{2}\right]
=10[5232]=5[53]=10\left[\frac{5}{2}-\frac{\sqrt{3}}{2}\right]=5[5-\sqrt{3}]
=5[51.732]=16.34N=5[5-1.732]=16.34 N