Solveeit Logo

Question

Question: A wire with \(15 \Omega\) resistance is stretched by one tenth of its original length and kept volum...

A wire with 15Ω15 \Omega resistance is stretched by one tenth of its original length and kept volume of wire is constant. Then its resistance will be

A

15.18Ω15.18 \Omega

B

81.15Ω81.15 \Omega

C

51.18Ω51.18 \Omega

D

Answer

Explanation

Solution

: If the wire is stretched by (1/10)th( 1 / 10 ) ^ { \mathrm { th } } of its original length then the new length of wire become.

As the volume of wire remains constant then πr12l=πr22l2=πr22(11l10)\pi r _ { 1 } ^ { 2 } l = \pi r _ { 2 } ^ { 2 } l _ { 2 } = \pi r _ { 2 } ^ { 2 } \left( \frac { 11 l } { 10 } \right) (using (i))

r22=1011r12\Rightarrow \mathrm { r } _ { 2 } ^ { 2 } = \frac { 10 } { 11 } \mathrm { r } _ { 1 } ^ { 2 }

Now the resistance of stretched wire.,

R2=ρ(1110l)πr22=(1110)ρlπ×1011r12=(1110)2×ρlπr12\mathrm { R } _ { 2 } = \frac { \rho \left( \frac { 11 } { 10 } \mathrm { l } \right) } { \pi \mathrm { r } _ { 2 } ^ { 2 } } = \frac { \left( \frac { 11 } { 10 } \right) \rho \mathrm { l } } { \pi \times \frac { 10 } { 11 } \mathrm { r } _ { 1 } ^ { 2 } } = \left( \frac { 11 } { 10 } \right) ^ { 2 } \times \frac { \rho \mathrm { l } } { \pi \mathrm { r } _ { 1 } ^ { 2 } }

(R1=ρlπr12=15Ω)\left( \because \mathrm { R } _ { 1 } = \frac { \rho \mathrm { l } } { \pi \mathrm { r } _ { 1 } ^ { 2 } } = 15 \Omega \right)

R2=(1110)2×15=18.15Ω\therefore \mathrm { R } _ { 2 } = \left( \frac { 11 } { 10 } \right) ^ { 2 } \times 15 = 18.15 \Omega