Solveeit Logo

Question

Physics Question on mechanical properties of solids

A wire of natural length l,l, Youngs modulus YY and area of cross-section AA is extended by xx . Then the energy stored in the wire is given by

A

12YAlx2\frac{1}{2}\frac{YA}{l}{{x}^{2}}

B

13YAlx2\frac{1}{3}\frac{YA}{l}{{x}^{2}}

C

12YlAx2\frac{1}{2}\frac{Yl}{A}{{x}^{2}}

D

12YAl2x2\frac{1}{2}\frac{YA}{{{l}^{2}}}{{x}^{2}}

Answer

12YAlx2\frac{1}{2}\frac{YA}{l}{{x}^{2}}

Explanation

Solution

Energy stored in the wire
U=12Y×(strain)2×volumeU=\frac{1}{2}Y\times {{(strain)}^{2}}\times volume
Or U=12Y×(xl)2×AlU=\frac{1}{2}Y\times {{\left( \frac{x}{l} \right)}^{2}}\times Al
Or U=12Yx2l×AU=\frac{1}{2}\frac{Y{{x}^{2}}}{l}\times A
Or U=12YAlx2U=\frac{1}{2}\frac{YA}{l}{{x}^{2}}