Solveeit Logo

Question

Physics Question on elastic moduli

A wire of length LL and area of cross-section AA is stretched through a distance xx metre by applying a force FF along length, then the work done in this process is: (Y is Youngs modulus of the material)

A

12(A.L)(YxL)(xL)\frac{1}{2}(A.L)\left( \frac{Yx}{L} \right)\left( \frac{x}{L} \right)

B

(A.L)(YL)(xL)(A.L)(YL)\left( \frac{x}{L} \right)

C

2(A.L)(YL)(xL)2(A.L)(YL)\left( \frac{x}{L} \right)

D

3(A.L)(YL)(xL)3(A.L)(YL)\left( \frac{x}{L} \right)

Answer

12(A.L)(YxL)(xL)\frac{1}{2}(A.L)\left( \frac{Yx}{L} \right)\left( \frac{x}{L} \right)

Explanation

Solution

Work done =12×=\frac{1}{2}\times stress ×\times strain ×\times volume
or W=12YxL×xL×ALW=\frac{1}{2}Y\frac{x}{L}\times \frac{x}{L}\times AL
=12(AL)(YxL)(xL)=\frac{1}{2}(AL)\,\left( Y\frac{x}{L} \right)\,\left( \frac{x}{L} \right)